文献阅读 | iMeta | ImageGP 2 用于增强生物医学研究中的数据可视化和可重现分析

文献介绍

文献题目: ImageGP 2 用于增强生物医学研究中的数据可视化和可重现分析
研究团队: 陈同(中国中医科学院中药资源中心)、刘永鑫(中国科学院遗传与发育生物学研究所)、黄璐琦(中国中医科学院中药资源中心)
发表时间: 2024-09-12
发表期刊: iMeta
影响因子: 33.2
DOI: 10.1002/imt2.239

摘要

ImageGP 是一个广泛使用的开源在线数据可视化与分析平台。过去 7 年间,该平台已为全球用户提供超过 70 万次服务,并获得大量用户反馈。升级版 ImageGP 2(访问地址:https://www.bic.ac.cn/BIC)采用前沿网页技术重新设计界面,增强了功能性与交互体验。主要改进包括:(1)新增数据格式转换模块,支持矩阵合并、子集提取及长宽格式转换等操作;(2)优化工作流程,新增预参数选择数据验证及属性相似参数分组功能;(3)扩展可视化功能与分析工具,新增加权基因共表达网络分析、差异基因表达分析和 FASTA 序列处理等功能;(4)个性化用户空间支持大文件上传、分析历史追踪,以及可重复分析数据、脚本和结果的共享;(5)通过一键式错误调试功能强化用户支持;(6)推出 ImageGP 的 R 语言包,支持本地数据可视化与分析。这些升级使 ImageGP 2 成为兼具湿实验与干实验研究需求的多元化工具。

前言

在生命科学“组学”时代,海量复杂的生物数据集已在基因组学、转录组学、表观基因组学、蛋白质组学、代谢组学和临床领域变得无处不在。人类基因组计划、ENCODE、人类细胞图谱、Earth BioGenome 计划、Protist 10,000 基因组计划,以及人类蛋白质组导航计划 (π-HuB) 等大科学项目正在产生前所未有的数据量。例如,仅 GenBank 最新版本 (261.0) 就包含超过 33.8 亿条全基因组测序记录,涵盖 27.9 万亿个碱基对的基因组数据。国家基因组科学数据中心 GSA 数据库存储近 50 拍字节数据 (截至 2024 年 6 月),而 IMP 数据库收录了植物基因组 7160 亿个碱基对。此类异质性数据的管理与整合带来重大挑战,亟需强大工具与方法支撑。

有效利用这些庞大生物数据集蕴含巨大价值,但需克服数据复杂性、跨资源整合及大数据处理标准化原则建立等诸多挑战。支持大规模生物数据分析的工具对于将这些信息转化为生物医学机制的全面认知具有关键作用,这对转化医学与个性化医疗应用至关重要。

在此背景下,数据可视化成为研究人员有效理解和传递复杂生物学洞见的关键工具。这类工具——尤其是交互式仪表盘形式——通过图表、图形和地图等直观的图形化呈现,帮助研究者识别数据趋势、发现异常值并揭示潜在规律,从而深化认知并支撑数据驱动的决策。可视化呈现的易获取性与可解释性突破了原始数据的认知壁垒,使得复杂科学发现能够触达更广泛的受众。

目前已有众多工具服务于多样化的数据可视化需求,主要可分为三大类:命令行工具(如 R、Python、Perl、LaTeX、Javascript、MATLAB、Gnuplot、Graphviz)、桌面软件(如 Excel、PowerPoint、Cytoscape、Gephi、IGV、Mayavi、Tbtools),以及在线平台(如 ImageGP、EVenn、HemI、Sangerbox、OmicStudio、shinyCircos、TOmicsVis、Wekemo Bioincloud、iMeataLab Suite、iNAP、Majorbio Cloud、MetOrigin)。每类工具在灵活性、易用性和计算资源需求方面各具优势与局限。

ImageGP 2(访问地址:https://www.bic.ac.cn/BIC/#/)作为在线数据可视化与分析平台的重要升级,专为满足生物医学研究者的进阶需求而设计。该版本采用尖端网页技术重构界面,强化功能与交互体验,核心特性包括:数据格式转换模块、支持预选参数验证的流程优化、扩展的可视化功能与分析工具(如加权基因共表达网络分析 [WGCNA] 和差异基因表达分析),以及管理大型数据集和分析历史的个性化用户空间。此外,配套 R 包 ImageGP 的推出将这些功能延伸至本地环境,有效应对湿实验与干实验场景中的可用性及数据管理挑战。

研究结果

1. ImageGP 2 概述

ImageGP 2 基于前代用户反馈进行了重大改版,旨在提升用户体验与功能。该平台整合了 45 种独立工具,并按六大主题板块(Figure 1)提供了 13 项教学资源,涵盖专业图表生成、数据转换与提取功能、生物信息学分析、交互式可视化工具,以及图文与视频教程,同时设有专门的生物信息学资源专区。

Figure 1. ImageGP 2 的功能框架

Figure 1. ImageGP 2 的功能框架

内部圆圈说明了六个关键部分:专业绘图生成,数据转换和提取,生物信息学分析,交互式可视化工具,生物信息学资源中心以及文本和视频教程。外圆列出了代表性可视化输出的示例。

该平台拥有 17 种专门用于创建各类图表的数据可视化工具,包括热图、箱线图、柱状图、散点图(含富集分析和火山图等变体)、主坐标分析图、直方图、折线图以及多种维恩图(Figure 1)。虽然这些工具大部分在早期版本中已有提供,但后端代码已完全重构。此次升级引入了增强的数据验证逻辑以减少用户输入错误,并扩展了参数选项以优化数据筛选和美学属性探索。平台提供详尽的图文教程和视频教程,用户既可在教程专区查看,也可在各工具界面便捷获取。每个工具均设有轮播图展示输入数据格式、参数设置和输出格式,并配有示例按钮以便用户复现演示案例。

2. 添加用于数据格式转换的模块

在生物分析领域,大多数处理后的数据以矩阵形式存储,例如基因表达矩阵以及记录细菌、蛋白质或代谢物丰度水平的矩阵。这些矩阵通常采用宽格式结构,便于进行样本间比较(如热图所示)。然而基于图形语法的可视化工具(如 ggplot2)需要长格式数据才能有效实现变量到视觉属性的映射。

从语义上看,宽矩阵应包含更多列,而长矩阵必然包含更多行(Figure 2A),但这并非本质区别。宽格式矩阵通常含有多列,其中除首列外各列均为同质数据。例如在基因表达矩阵中,各列数值均代表不同样本的基因表达水平。若要将此类数据用于可视化(如将表达值映射为点的大小属性),由于需聚合所有列的数据,实际操作中存在困难。

Figure 2. 矩阵格式与转换功能

Figure 2. 矩阵格式与转换功能

(A) 宽格式与长格式矩阵相互转换示意图。
(B) 矩阵合并的五种模式展示:左合并、右合并、内合并、外合并及水平堆叠(hstack)。
(C) "矩阵展开"功能说明,该功能通过拆分单列元素并复制其他列数值实现矩阵维度扩展。

相比之下,基因表达表转换得到的长格式矩阵具有更少的列(如样本、基因、表达值)和更多的行,每行代表基因与样本的独特组合(Figure 2A)。这种格式允许各列包含异质性数据,便于直接将特定列映射至不同美学属性。值得注意的是,根据分析需求,同一矩阵可被视为宽格式或长格式。例如,当比较所有样本时,基因表达矩阵作为宽格式使用;而在生成任意两个样本间相关性的散点图时,该矩阵又可作为长格式使用,此时各列代表不同属性。

另一种常见操作是矩阵合并,包含五种模式:左合并(保留左侧矩阵所有条目)、右合并(保留右侧矩阵所有条目)、内合并(保留两矩阵共有条目)、外合并(合并两矩阵所有条目)以及水平堆叠(拼接所有列)(Figure 2B)。该功能通常用于将长格式的丰度矩阵与元数据矩阵整合,从而添加样本的附加属性。此外,该操作还支持通过左、右或内合并模式提取矩阵子集。例如在左合并模式下,仅提取左侧矩阵中目标基因对应的表达数据子集。矩阵合并功能还可用于基因 ID 转换等任务。

此处以基因表达绘图为例展示这些矩阵操作功能的应用。通常基因表达矩阵采用如下所示的宽矩阵格式:

假设我们需要通过密度图分析 Gene1 在所有样本中的表达分布。该矩阵初始为宽格式结构。为便于分析,我们将其转置为:

在此转置矩阵中,单列代表一个基因,将其转化为适用于以基因为独立属性的长矩阵分析模式。将该数据粘贴至直方图工具并配置参数后,即可生成 Gene1 在所有样本中的表达分布图谱(Figure S1)。

若需比较不同样本组间的基因表达谱差异,我们引入元数据进行扩展分析:

通过"矩阵合并"工具整合这些矩阵,生成合并数据集(Figure S2):

通过该合并数据集,我们可使用直方图工具对不同样本组进行对比分析,可视化各基因在不同条件下的表达分布图谱(Figure S3)。

若需同时分析多个或全部基因,由于当前矩阵中每个基因均为独立属性,需将所有基因归为一列、表达值归为另一列。这一功能通过"宽矩阵转长矩阵"工具实现(Figure S4):

随后,通过直方图工具的合理配置,即可获得选定基因在不同组别中的表达分布图谱(Figure S5)。

该工具还包含"矩阵展开"功能,通过拆分单列元素并复制同行其他列数值实现矩阵扩容(Figure 2C)。这一被称为"exploding"的特性可显著扩展矩阵维度,其应用案例包括将基因功能富集表转换为网络格式以可视化通路-基因关联关系。

3. 工具使用流程优化说明

各工具的操作流程均经过优化以提升交互体验。用户首先需设定输入参数,包括必要时声明矩阵格式(长/宽型)、选择直接粘贴数据或调用已上传文件。提交输入后,通过"数据校验"功能验证是否符合预设规则:对单矩阵校验包括矩阵合法性(行列维度统一)、标题行无特殊字符(通常为列名)、首列无重复项(宽格式行名)、宽格式矩阵数值一致性等。系统会明确提示错误类型、问题项及其位置,用户可及时修正数据再继续操作。

涉及多矩阵时,系统会校验矩阵间关联性。例如热图分析包含热图数据、行注释和列注释三个矩阵时,将验证注释矩阵首列所有条目是否与热图数据矩阵对应条目匹配。作者持续根据用户反馈优化文件校验逻辑,有效减少运行时错误。通过校验后,用户可在工具页自由调整其他参数以推进后续分析。

参数采用逻辑分组和手风琴式布局以简化用户操作。不含必需参数的组别默认折叠,确保界面简洁。如"热图"工具无必需参数,数据验证后所有组别保持折叠,用户可立即提交分析;而"箱线图"等工具则用红星标注必需参数(如"X轴变量"和"Y轴变量"),相关组别默认展开便于选择。未标星参数均为可选配置,用户可先专注核心设置完成初步分析,后续再通过参数说明探索调整效果。

参数功能也进行了多项优化:移除数据类型选择等易混淆参数,转由后端自动检测提升可靠性;在"X轴变量排序"等几何排序参数中整合数据筛选功能,通过下拉值选择实现数据过滤或图形布局控制;新增数据预处理、统计标注、色彩定制、分面绘图等参数选项,支持交互式图表和 PPT 等输出格式。此外,放宽列序和列名限制,使 ImageGP 不仅适用于生物数据,只要输入结构化矩阵,化学、物理等领域数据同样适用。

4. 拓展工具

新版 ImageGP 的工具集全面升级,参数组织更优化且灵活性显著提升。以箱线图工具为例,现支持单组、多组、配对连线、分面箱线图等多种配置模式。用户可一键转换为小提琴图、点图、抖动图或其组合图,并能自由切换纵/横向布局。特别针对单细胞标记基因箱线图展示提供了专用参数配置(Figure 3A)。

Figure 3. 典型可视化与分析成果展示

Figure 3. 典型可视化与分析成果展示

(A) 通过参数组合生成的多种箱线图配置,包括单组、多组、配对连线、分面图及蜂群图。
(B) 加权基因共表达网络分析结果及结构化八部分综合报告。
(C) 支持动态布局调整的多序列比对交互式图谱。
(D) 整合定性定量数据的系统发育树展示,结合关联注释热图实现增强可视化。

在线性判别分析效应量分析中,用户可直接输入修正后的结果生成专属图表,支持自定义分组配色并输出带嵌入式文字的可编辑矢量图。相较于旧版本将所有结果压缩打包,新版通过图文并茂的在线文档呈现结果,不仅便于开展多步骤、多输出的综合分析,还能与加权基因共表达网络分析 (WGCNA) 及差异基因/蛋白表达分析等生物信息学工具协同使用。

除数据转换功能外,本次升级新增 10 种生物信息学分析工具,包括:WGCNA、limma 差异表达分析、多序列比对、FASTA 反向互补序列生成、RNA 翻译、MOTIF 搜索、FASTA 序列提取、指定区域点检测、GXF 转 BED 格式转换以及 GXF 文件 CDS/蛋白序列提取。同时新增 3 种交互式绘图工具。

以 WGCNA 为例,其分析流程包含八个标准化步骤,操作简便:用户仅需粘贴或上传表达数据即可启动分析,最终获得结构化报告。报告对应八个分析环节,每个环节包含静态/交互式图表、数据表格、步骤说明及结果下载选项(Figure 3B)。该报告模板可扩展应用于其他工具组合的连贯分析流程。

多序列比对工具首次引入交互式图谱,用户无需重新计算即可动态调整布局,悬停查看详细信息(Figure 3C)。值得注意的是,圆形系统发育树工具支持基于 Newick 格式的进化分析,并可整合多种注释信息(Figure 3D)。系统发育树作为组织生物多样性知识、构建分类框架和揭示进化关系的重要工具,用户可通过添加属性矩阵设置分支和节点颜色,融合定性与定量信息实现增强型数据可视化。

5. 优化用户支持与简化错误报告机制

尽管在提交前会对输入数据进行初步检查,但由于用户自定义参数或特殊数据内容(如空值或符号冲突),仍可能出现意外错误。这类情况属于在线工具常见的操作挑战。基于长期经验积累,作者实施了严格的数据和参数验证流程来主动应对这些问题。不过用户仍可能遇到运行时错误,特别是非编程背景的用户往往难以提供完整的调试信息。

为简化错误处理流程,作者在结果页面新增"请求帮助"按钮。该功能能在程序执行时自动捕获错误,并引导用户直接将错误日志提交给开发团队。收到日志后,开发人员会立即启动调试流程,修正程序代码以解决问题。选择留下联系邮箱的用户将在 1-3 个工作日内获得包含具体调试信息和解决方案的回复。

这项改进不仅简化了用户错误报告流程,更能基于实际使用反馈持续优化程序。通过迭代更新,ImageGP 2得以灵活应对日益复杂的数据需求和用户场景。

6. R 包 ImageGP

ImageGP 2 作为重构的网页服务,其核心创新在于整合了全新 R 包 ImageGP,该程序包承载了平台各类分析与可视化工具的核心功能。

早期在线版采用 bash 脚本动态生成 R 脚本的模式,导致代码逻辑大量重复:既增加调试时的修改难度,又阻碍新功能扩展。且非 bash 脚本用户难以直接运行这些脚本。新版改用纯 R 代码处理用户输入与参数验证,将相似功能模块化为 96 个 R 函数(含 12 个核心绘图函数),涵盖数据转换、逻辑校验与属性映射等功能,系统性应用于所有可视化工具及其他操作场景。由此,单个函数的错误修复可全局生效,极大提升维护效率。

ImageGP 的 R 包参数与在线版本完全一致。每个可视化工具都会生成适配用户输入参数的 R 脚本供下载,用户可在 Rstudio 等集成环境中修改文件路径与输出前缀后本地运行。该设计具备三重优势:其一,用户可先用相同表头的模拟数据在线调试参数,生成可视化方案后,再本地替换真实文件路径获取结果,确保数据隐私;其二,支持直接在本地R脚本中添加额外调参,实现个性化分析;其三,通过循环处理实现本地批量出图。

这种深度集成的 R 包方案不仅增强了用户操作灵活性与数据安全性,更赋予进阶用户突破在线标准参数限制、拓展功能边界的能力。

讨论

ImageGP 最初旨在提升科研人员的数据可视化能力,这一目标已得到验证。但用户需意识到,包含过多数据点的可视化可能导致误读——设计不当的图表会引发认知偏差,而过于简化的图形可能无法传递关键信息,精妙的可视化则能在清晰传达与信息过载之间取得平衡。

近年来,科研领域对高效信息可视化的需求与日俱增。成功的数据可视化超越简单的图形呈现,需要以明确目标驱动设计决策:研究者须确定待展示的数据特征,据此选择几何元素(点/线/柱等)、制定数据列到色彩/形状/尺寸等美学属性的映射、应用统计转换方法、设定坐标系类型。分面等技术的运用则可实现数据子集的可视化。这些组件的有机结合最终形成完整的图形输出。

在设计 ImageGP 时,作者采用分步引导模式:用户先选择图表类型,再配置 x 轴、y 轴、颜色、尺寸、形状等数据属性。这种设计旨在帮助用户理解可视化流程,并提升图表解读能力。平台同时支持自由尝试多种可视化形式,以匹配不同分析需求。

ImageGP2 标志着重大升级。作者持续通过文本/视频教程及培训课程降低使用门槛。未来开发将聚焦两大方向:其一,打造命令行工具向在线工具转化的计算平台,扩大研究者受众;其二,构建从 FASTQ 原始序列数据开始,涵盖序列比对、定量分析到可视化的一站式分析流程。

--------------- 结束 ---------------

注:本文为个人学习笔记,仅供大家参考学习,不得用于任何商业目的。如有侵权,请联系作者删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TigerZ 生信宝库

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值