- 博客(25)
- 资源 (1)
- 收藏
- 关注

原创 天津理工大学25考研计算机复试分享(送机试资料)
第五、选导师方面,因为等出完了成绩,会有很多同学胡乱的联系导师,这样是很不好的,因为你不知道你适合什么样的方向,或者是那些老师更加合适,这些你们都可以私我,我找找各个实验室的同学,为你们讲解老师的方向,处事风格,是否放实习,是否有最低毕业要求,实验室的设施服务器呀等等,这些可以开一个讲解会。第四、如果没有竞赛和科研方面的经历,那也没有关系,目前学院大部分实验室做的是CV方向,可以私我,我帮你找相关方向的学长带你入入门,让你提前学习老师们的方向,读一些针对性的文章,让你复试时候让老师眼前一亮,直接逆袭。
2024-01-05 10:21:45
1261
20
原创 解决一键重命名所有文件问题
将变量的值设置为你需要处理的文件夹的实际路径。:执行这段代码后,它会遍历指定文件夹中的所有文件,将所有以.xml结尾的文件名中的"图片"替换为。
2024-11-05 19:25:03
185
原创 YOLO 训练异常终止、断电、服务器关机,恢复训练,训练过程中调整训练周期
对于训练一个新的YOLO模型或者是跑原模型,在训练过程中总会遇到误触或是异常操作导致训练终止,肯定不想重新开始训练
2024-08-12 09:49:56
1827
3
原创 论文笔记:Cross -Scale Self-Attention Module(CSSA):跨尺度自注意力模块
CSSA模块包括注意力模块和特征融合模块。网络中与正常的注意力模块不同之处是利用特征融合将深层特征向量作为Q和K的输入,将浅层特征向量作为V的输入,这种方式通过深层特征之间的高语义相关性来丰富增强浅层的特征。
2024-03-16 16:29:46
1020
2
原创 YOLOV8制作训练数据集,使用数据集进行训练模型,使用训练模型权重验证数据集(以数据集coco128为例)
Yolo系列的数据集格式一般是jpg或者是png格式,标签是txt文件本次数据集制作以为例,制作自己的小型数据集,作为训练学习使用coco128数据集大家自行下载,或者自己手里的数据集都可以使用,仅作为示例为大家展示,对于自己的数据集修改相应示例中的名称即可。
2024-03-16 16:24:21
3356
1
原创 YOLO V8 predict.py将命令行运行改为直接运行
YOLOv8命令行运行代码为:yolo predict model=yolov8n.pt source='ultralytics/assets/bus.jpg'在入门阶段进行调试时每次需在命令行运行较为麻烦,修改主函数参数的调用。传入所需运行的参数模型 model。传入所需预测的图片地址 source。
2024-01-16 15:48:27
1758
1
原创 YOLO系列学习——V4
Yolo V4:改进之处:集百家之所长,很多细节之处BOF:只增加了训练成本,将数据进行处理,但是测试是正常的测试,如:调整图像的对比度、亮度、旋转等等1.马赛克的数据增强(Mosaic data augmentation)Dropblock:之前的dropout是随机的杀死一些选择点,现在的dropblock是吃掉一个区域,增加难度标签平滑(label Smoothing):神经网络最大的缺点:过拟合比如让原来的标签【0,1】变成【0.05,0.95】使用之后,会使得之后的效果:族内更加紧密,族间更加分离
2023-12-21 21:26:16
576
原创 YOLO系列学习——V3
通过多scale来进行对大小物体的检测,将检测框分为3个分类,通过不同的感受野来进行划分,感受野越大的特征图就更加容易去检测更大的物体,随着网络的不断加深,越深层的卷积所生成的特征图,所对应的感受野也就也大,为之分配更加大的检测框,而在中间过程中所产生的特整体,其感受野也就小一些,可以用来检测小一点的,使用小的检测框。先验框更加丰富,3种scale,每种有3个规格,一共9种(V1-2种:横框和竖框,v2-5种:经过聚类的划分,V3-9种)特点:特征做得更仔细了,融入多持续特征图信息来预测不同的规格物体。
2023-12-21 20:54:22
432
原创 YOLO系列学习——V2
双阶段two_stage:Faster-rcnn mask-rcnn单阶段ont_stage:YOLO系列优缺点:优势是速度快,缺点是通常情况下效果不太好Map:综合的衡量检测效果IOU:所选框与目标框的交并比。
2023-12-21 20:45:35
373
原创 yolo入门:使用Yolov7来检测自己的图片detect.py(以及进行简单的修改,不使用命令行来运行)
Yolov7的速度以快出名,目前处于入门状态的小伙伴儿,可以先试着跑起来,但是对于去训练周期太长了,我在学习中,发现项目工程的里边放入自己的照片,运行来进行目标检测,我使用的权重参数是项目默认的那一个yolov7.pt这里边的默认是default='yolov7.pt',使用别的在这儿更改就好由于在项目的readme中所说明的运行detect.py的方法使利用命令行的形式,每次都要进行传参,我们在初始阶段很多参数不需要去更改,所以让其默认就好,我们将deteced.py的代码做简单的修改,代码附在最后。
2023-12-08 16:32:42
5335
7
原创 YOLOv7 main文件代码分享
yolov7从github上下载了代码,下载非常慢,并且下载下来出现文件夹错误,经过修复加压后,里边的文件依然少东西,少了utils文件夹,并且这个项目运行需要参数权重,下载也很慢,我搜集全了,供大家一起学习,网盘分享,里边已经把main代码和所有的权重都下载了。需要的自取,有问题留言!
2023-12-03 19:27:46
533
2
原创 计算机视觉研究生入门心得
该文提出了一种多模态面部表情识别方法,利用音频信息和面部图像来提供区分一些模糊面部表情的重要线索。具体来说,就是引入了一个模态融合模块(MFM)来融合音频与视觉信息,其中图像和音频特征是使用Swin Transformer提取的。实验结果表明,该方法在AU检测任务上取得了较好的性能。模态融合模块(MFM),原意思是Multi Fusion Module ,在文中的解释是因为在脸部识别时,会存在图片不清晰的状况,通过脸部图像和声音的结合模式,判断声音的语速、音调以及大小,来多模式的融合识别面部,提高准确度。
2023-11-18 18:49:20
335
1
原创 出现DataLoader worker (pid(s) 22372, 5076, 21860, 9012) exited unexpectedly解决方法分享
DataLoader worker (pid(s) 22372, 5076, 21860, 9012) exited unexpectedly解决方法
2023-10-21 09:24:15
382
1
原创 安装Anaconda、cuda、pytorch所对应的版本号以及安装教程和验证是否成功(以我的华为matebook13,英特尔显卡驱动为419.72为例)
讲解如何寻找安装pytorch、anaconda相应版本号,安装的详细步骤,对应的版本是英特尔GeForce 250,驱动程序版本:419.72,操作系统是windows10,电脑是华为matebook13(14也一样)
2023-09-24 17:53:44
7375
2
原创 路由表计算问题、IP数据报分片问题
请为下图中的路由器R1写一张路由表(其中应包括可能存在的目的网络地址(Destination)、子网掩码(Mask)、跳数和下一跳路由器地址(Next Hop)四项内容,直连网络直接标注)。
2022-04-14 15:55:30
3092
2
原创 matebook13、14 C盘扩展
有用华为matebook13、14的朋友们都有C盘不够用的困扰,压缩D盘后,压缩的空间没法扩充到C盘,经过我的研究操作,可以将C盘扩充,自己设置想要的大小。1.第一步,先计算一下自己想把C盘加多大。例如:我想给C盘加100G,我的总共大小为512G,原c盘大小为79,扩充后为179G,所以D盘应该留下300G左右。2.第二步,把自己将要给D盘的大小给压缩出来,做成E盘。3.第三步,把D盘中自己的数据文件全选剪切致E盘,然后把D盘格式化。4.第四步,最后把D盘中剩余的大小加到C盘上,然后把E
2022-02-12 09:46:57
5266
原创 PTA 猴子选大王
PTA-猴子选大王一群猴子要选新猴王。新猴王的选择方法是:让N只候选猴子围成一圈,从某位置起顺序编号为1~N号。从第1号开始报数,每轮从1报到3,凡报到3的猴子即退出圈子,接着又从紧邻的下一只猴子开始同样的报数。如此不断循环,最后剩下的一只猴子就选为猴王。请问是原来第几号猴子当选猴王?输入格式:输入在一行中给一个正整数N(≤1000)。输出格式:在一行中输出当选猴王的编号。输入样例:11输出样例:7#include “stdio.h”int main(){int i,sum=0;
2021-04-14 08:36:09
253
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人