通过智能分块策略、动态分块、多路召回与重排序融合、异构数据关联与溯源提升Ragflow与LangChain提升RAG的召回率

如何通过Ragflow与LangChain提升大模型AI应用的召回率?


一、召回率在大模型AI应用中的定义
在大模型AI应用中,召回率(Recall) 指模型从所有相关文档中正确检索到的比例。具体来说,它衡量了系统在给定查询时能否尽可能全面地覆盖所有潜在相关的文档片段。例如,若知识库中有100篇相关文档,系统检索到80篇,则召回率为80%。
在RAG(检索增强生成)场景中,高召回率意味着更少的“漏检”,但可能伴随更多不相关结果(需结合精确率平衡)。


二、LangChain中提升RAG召回率的策略

  1. 多查询生成与扩展
    • 核心方法:通过大模型生成原始问题的多个变体(如同义词、不同表述),扩大检索范围。

    • LangChain实现:使用 MultiQueryRetriever,自动生成3-5个查询变体并行检索。例如,用户提问“量子计算的应用”可能被扩展为“量子计算的实际案例”“量子计算机如何解决实际问题”等。

    • 效果:平均提升召回率20-30%。

  2. 混合检索技术
    • 策略组合:结合关键词匹配(如BM25)与语义向量检索(如Embedding),兼顾精确关键词与语义相似性。

    • LangChain代码示例:

    from langchain.retrievers import BM25Retriever, EnsembleRetriever  
    ensemble_retriever = EnsembleRetriever
### RAGFlow 架构中的多路召回重排序实现 RAGFlow 是一种基于 Retrieval-Augmented Generation (RAG) 的架构设计,旨在提升知识库问答系统的性能。它通过结合多种检索技术(如向量检索和全文检索),实现了高效的多路召回机制,并引入了融合重排序策略以优化最终结果的质量。 #### 多路召回的实现 在 RAGFlow 中,多路召回主要依赖于以下几种核心技术和方法: 1. **向量检索** 向量检索利用预训练的嵌入模型将文本转化为高维向量表示,从而能够在语义空间中找到最接近的候选文档[^1]。这种方法特别适用于处理模糊查询或长尾查询场景下的数据召回问题。 2. **全文检索** 全文检索则侧重于精确匹配关键词或者短语模式,能够快速定位包含特定术语的内容片段[^3]。对于结构化程度较高的数据库而言,这种方式往往能提供更高的查准率。 3. **并行执行结果整合** RAGFlow 平台允许同时启动上述两种类型的检索操作,并通过对返回结果集进行综合分析来选取最优解。具体来说,系统会先分别获取来自向量检索器和传统搜索引擎的结果列表;随后采用专门设计好的算法完成后续步骤——即所谓的“重排序”。 #### 融合重排序的技术细节 为了进一步改善用户体验,RAGFlow 提供了一套完善的融合重排序方案: 1. **加权求和法** 这是最基础的一种组合形式,即将每条记录从不同源处获得分数按照一定比例相加以得到总体评价指标值。然而需要注意的是,此方法存在局限性:一旦某个单独维度上的评估失真,则可能拖累整个体系的表现水平。 2. **线性加权总和基础上的结果倒数融合排序(RRF)** 此外还有更为先进的 RRK 技术被应用于实际项目当中。该方法不再简单依靠固定权重分配原则,而是动态调整各因子间的关系系数,力求达到全局意义上的平衡状态。 3. **再排名模型的应用** 部分高级版本还额外加入了专用 AI 组件负责最后一步筛选工作。这些组件通常由深度学习框架构建而成,具备强大的泛化能力和自适应特性,可有效弥补前期计算过程中可能出现的各种偏差现象[^2]。 以下是简单的伪代码展示如何在一个理想条件下实施这样的流程: ```python def rag_flow_retrieval(query, vector_index, text_index): # Step 1: Perform Vector Search vec_results = vector_search(query, vector_index) # Step 2: Perform Textual Search txt_results = textual_search(query, text_index) # Step 3: Combine Results Using Weighted Sum or Other Methods combined_scores = combine_results(vec_results, txt_results) # Optional Step 4: Apply Re-Ranking Model reranked_results = apply_reranker(combined_scores) return reranked_results ``` 以上便是关于 RAGFlow多路召回及其相应改进措施的大致介绍内容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值