深度学习神经网络模型微调

本文探讨了在不同数据集下如何通过微调策略优化深度学习模型,包括对预训练模型的特定层进行高/低冻结,以及针对新数据源选择性地重新训练K层权重。重点强调了数据量影响和权重调整的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

不同数据集下使用微调

数据量相似度微调方向
修改最后几层或最终的softmax层
冻结预训练模型的初始层
重新训练
原有模型基础上所有权重更新

微调的方式

  • 换数据源
  • 针对K层重新训练
  • K层的权重和shape调整
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值