利用TensorFlow构建一个简单神经元

这篇博客介绍了如何使用TensorFlow库构建一个简单的神经网络模型来预测房价。通过创建一个全连接层(Dense)并配置优化器(sgd)和损失函数(mean_squared_error),模型在给定的训练数据集上进行了训练。输入数据包括x值,对应的y值为房价。最终,模型对x=7的房价进行了预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

建立一个简单的神经元进行房价预测


import tensorflow as tf
import numpy as np
from tensorflow import keras
model =tf.keras.Sequential([keras.layers.Dense(units=1,input_shape=[1])])#建立一个
model.compile(optimizer='sgd',loss='mean_squared_error')
xs=np.array([1.0,2.0,3.0,4.0,5.0,6.0],dtype=float)
ys=np.array([1.0,1.5,2.0,2.5,3.0,3.5],dtype=float)
model.fit(xs,ys,epochs=5000)
print(model.predict([7.0]))

建立一个y=0.5x+0.5的函数,对x=7进行预测。
其中Dense 为全连接层,units参数表示该层的神经单元结点数。input_shape,表示输入数据。Dense 的具体参数点击这里

  • compile 用于配置需要训练的模型,optimizer 表示
  • loss 用来配置模型的损失函数,可以通过名称调用tf.losses API中已经定义好的loss函数。
  • metrics 用来配置模型评价的方法,如accuracy、mse等。
    更多用法参考这里
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值