一、深度学习
深度学习:顾名思义学习特征
从原始数据中提取模式的能力。机器学习就是让计算机模型学习到这些分类模型。深度学习面临的挑战是:图像的底层视觉特性和高层语义概念之间的鸿沟。例如人和狗是不一样的图像,但如果他们背景颜色都一样,视觉特征很像,但语义不同。
总的流程为:建立模型——损失函数——参数学习
step1:建立模型
前馈神经网络:可以将数据进行处理。


最后用函数来表达就是输入了特征(1−1)(1)\left( \begin{matrix} 1 \\ -1 \\ \end{matrix} \right) \tag{1} (