径向基神经网络RBF:Matlab实现多输入多输出RBF神经网络(含例子及代码)

该博客介绍了如何创建和训练一个5输入2输出的径向基函数(RBF)神经网络。通过生成随机5维度数据并计算其和的正弦和余弦作为输出,构建了训练集。使用newrbe函数建立网络,并进行模拟测试。最后,绘制了预测值与真实值的图像,以及它们之间的绝对误差,展示网络的预测效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

创建5输入2输出RBF神经网络:

x=2*rand(5,1000)-1;%输入为5维度共1000个数据
y(1,:)=sin(2*sum(x,1));%输出的第一维数据 
y(2,:)=cos(3*sum(x,1));%输出的第二维数据 

%% 训练网络
P=x;%输入数据
T=y;%输出数据
net = newrbe(P,T);%建立rbf神经网络 训练网络
%% 测试网络
A = sim(net,P);

%% 画出图像
figure
plot(A(1,:),'r*');
hold on
plot(T(1,:),'bo');
legend('预测值','真实值')
xlabel('n')
ylabel('y1')

figure
plot(A(2,:),'r*');
hold on
plot(T(2,:),'bo');
legend('预测值','真实值')
xlabel('n')
ylabel('y2')

figure
plot(A(1,:),A(2,:),'r*');
hold on
plot(T(1,:),T(2,:),'bo');
legend('预测值','真实值')
xlabel('y1')
ylabel('y2')

figure
plot(abs(A(1,:)-T(1,:)),'r-o');
hold on
plot(abs(A(2,:)-T(2,:)),'b-+');
xlabel('n')
ylabel('MAE')
legend('y1','y2')


结果:

目标1真实值和预测值:
在这里插入图片描述

目标2真实值和预测值:
在这里插入图片描述

目标1与目标2的真实值和预测值:
在这里插入图片描述

预测值和真实值的绝对误差:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值