
单目标应用
文章平均质量分 86
IT猿手
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
2025最新算法应用:基于恒星振荡优化(Stellar oscillation optimizer,SOO)算法的多个无人机协同路径规划(可以自定义无人机数量及起始点),MATLAB代码
本文提出了一种基于恒星振荡优化算法(SOO)的无人机路径规划方法。SOO是一种受恒星脉动现象启发的新型元启发式算法,通过正弦和余弦函数分别模拟恒星扩展和收缩阶段,实现优化过程中探索与开发的平衡。针对多无人机路径规划问题,建立了包含路径长度、安全性(避障)、飞行高度和平滑度(转弯/爬升)四项约束的数学模型,其中威胁建模为圆柱体障碍物。通过整合多个无人机的个体成本函数得到总体优化目标。实验结果表明,该方法能有效规划出满足安全性和可行性的无人机路径,具有收敛速度快、全局搜索能力强的特点。该研究为复杂环境下的多无人原创 2025-08-07 22:45:13 · 378 阅读 · 0 评论 -
2025最新算法应用:基于田忌赛马优化(Tianji’s horse racing optimization ,THRO)算法的多个无人机协同路径规划(可以自定义无人机数量及起始点),MATLAB代码
本文提出了一种基于"田忌赛马"策略的元启发式优化算法THRO,并将其应用于多无人机路径规划问题。THRO算法通过模拟历史典故中马匹比赛的策略安排,将候选解类比为马匹进行迭代优化。针对无人机路径规划,建立了综合考虑路径长度、安全性、飞行高度和飞行平滑度的多目标优化模型,其中威胁区域建模为圆柱体障碍物。通过定义四种成本函数(路径长度、威胁规避、高度约束和平滑性)构建总体成本函数,实现了对多无人机协同路径规划问题的数学建模。实验结果表明,该方法能有效处理多无人机的复杂路径规划任务。原创 2025-08-07 22:28:50 · 645 阅读 · 0 评论 -
2025最新算法应用:投影迭代优化(Projection-Iterative-Methods-based Optimizer)的多个无人机协同路径规划(可以自定义无人机数量及起始点),MATLAB代码
摘要: 本文提出了一种基于投影迭代的元启发式优化算法(PIMO)及其在无人机路径规划中的应用。PIMO算法通过引入四个新算子,结合Kaczmarz和随机梯度下降技术,提高了全局搜索能力和收敛速度。针对多无人机路径规划问题,建立了包含路径长度、安全避障、飞行高度和平滑性约束的数学模型,采用加权成本函数进行评估。仿真实验设置了4个无人机的不同起止点,验证了算法在复杂三维环境中的有效性。研究结果表明,PIMO算法能够有效解决多无人机协同路径规划问题,平衡最优性、安全性和飞行可行性等关键指标。原创 2025-08-07 22:15:35 · 295 阅读 · 0 评论 -
2025最新算法应用:回旋镖气动椭圆优化(Boomerang aerodynamic ellipse optimizer)算法的多个无人机协同路径规划(可以自定义无人机数量及起始点),MATLAB代码
摘要:本文提出了一种基于回旋镖气动椭圆优化(BAEO)算法的无人机路径规划方法。该算法通过模拟回旋镖飞行轨迹进行优化搜索,适用于多无人机协同路径规划问题。文中建立了包含路径长度、安全性、飞行高度和平滑度的多目标优化模型,并给出了具体数学表达式。实验部分展示了4-6架无人机的路径规划代码框架和仿真结果。该方法通过优化飞行航路点实现最短路径、避障和飞行可行性等多重目标,为无人机群协同作业提供了有效的解决方案。原创 2025-08-07 21:55:16 · 245 阅读 · 0 评论 -
2025最新算法应用:基于向光生长算法(Phototropic growth algorithm,PGA)的多个无人机协同路径规划(可以自定义无人机数量及起始点),MATLAB代码
本文提出了一种基于植物向光生长启发的新型元启发式算法(PGA)用于多无人机路径规划。首先建立了包含路径长度成本、威胁规避、高度约束和飞行平滑度的多目标优化模型,其中威胁被建模为圆柱体障碍物。然后采用PGA算法求解该问题,通过模拟植物趋光性机制优化无人机路径。实验结果表明,该方法能有效规划多条避障路径,满足无人机协同作业需求。文中提供了MATLAB代码实现,包含5个无人机的协同路径规划案例,展示了算法在实际三维环境中的应用效果。该研究为复杂环境下的无人机路径规划提供了新的解决方案。原创 2025-08-07 21:36:09 · 792 阅读 · 0 评论 -
2025最新算法应用:灰熊脂肪增加优化(Grizzly Bear Fat Increase Optimizer,GBFIO)的多个无人机协同路径规划(可以自定义无人机数量及起始点),MATLAB代码
摘要:本文提出了一种基于灰熊脂肪增加优化算法(GBFIO)的无人机路径规划方法。GBFIO算法模拟灰熊觅食行为,通过三个数学步骤解决优化问题。针对多无人机路径规划,建立了以路径长度最小化为目标的数学模型,并考虑了安全性、高度约束和平滑度等成本函数。实验部分展示了该方法在4个无人机协同路径规划中的应用,通过初始化不同起始点和目标点,验证了算法的有效性。研究为无人机集群协同作业提供了一种新型生物启发优化解决方案。原创 2025-08-07 21:18:13 · 886 阅读 · 0 评论 -
2025最新算法应用:基于整体群优化算法(Holistic Swarm Optimization,HSO)的多个无人机协同路径规划(可以自定义无人机数量及起始点),MATLAB代码
本文提出了一种基于整体群优化算法(HSO)的多无人机路径规划方法。HSO算法通过动态平衡探索与开发能力,在高维复杂环境中展现出优越性能。研究建立了包含路径长度、安全性、高度约束和平滑度四项指标的数学模型,采用加权求和方式构建多目标优化函数。仿真实验表明,该方法能有效规划4-5台无人机的协同路径,实现安全避障与高效飞行。文中详细给出了无人机起始点设置、威胁区域建模及各项约束条件的数学表达,为复杂环境下的多无人机路径规划提供了有效解决方案。原创 2025-08-07 20:54:10 · 965 阅读 · 0 评论 -
2025最新算法应用:基于基尔霍夫定律优化算法(Kirchhoff’s law algorithm,KLA)的多个无人机协同路径规划(可以自定义无人机数量及起始点),MATLAB代码
本文提出了一种基于霍夫定律优化算法(KLA)的无人机路径规划方法。KLA是一种新型物理启发的元启发式优化算法,通过模拟电路中的基尔霍夫电流定律进行优化。针对多无人机路径规划问题,建立了包含路径长度、安全避障、飞行高度和平滑性约束的数学模型。目标是最小化总飞行路径成本,同时考虑多机协同因素。实验结果表明,该方法能有效规划出满足安全性、可行性和最优性要求的无人机飞行路径。该方法为复杂环境下的多无人机协同路径规划提供了新的解决方案。原创 2025-08-07 20:35:33 · 901 阅读 · 0 评论 -
2025最新算法应用:基于梯度下降优化(Adam Gradient Descent Optimizer,AGDO)算法的多个无人机协同路径规划(可以自定义无人机数量及起始点),MATLAB代码
摘要:本文提出了一种基于Adam梯度下降启发的元启发式优化算法(AGDO),用于无人机路径规划问题。算法通过渐进梯度动量集成(PGMI)和动态梯度交互系统(DGIS)实现全局探索与局部开发的平衡,并引入系统优化算子(SOO)提高收敛精度。针对多无人机路径规划问题,建立了包含路径长度、安全性、高度约束和平滑度四项优化目标的数学模型,通过欧几里得距离计算路径成本,并考虑障碍物威胁和飞行高度限制。实验采用四无人机场景验证算法有效性,结果表明该算法能有效生成满足多种约束的优化路径。原创 2025-08-07 20:19:49 · 600 阅读 · 0 评论 -
2025最新算法应用:基于冬虫夏草优化算法(Caterpillar Fungus Optimizer,CFO)的多个无人机协同路径规划(可以自定义无人机数量及起始点),MATLAB代码
本文摘要: 提出一种新型冬虫夏草优化算法(CFO),模拟冬虫夏草寄生-重生的生物过程,具有双层搜索框架,能有效解决优化问题中的早熟收敛和局部极值问题。 建立了无人机路径规划数学模型,以路径长度最小化为目标,考虑安全性和可行性约束,包括威胁规避、高度限制和路径平滑度要求,构建了包含四项成本函数的优化目标。 实现了多无人机协同路径规划系统,通过初始化不同无人机的起始位置模型,采用CFO算法进行优化,最终生成满足各项约束条件的最优飞行路径。研究结果表明该算法在复杂环境下能有效规划无人机路径。原创 2025-08-06 23:18:55 · 772 阅读 · 0 评论 -
2025最新算法应用:基于猛禽优化算法(BPBO)的多个无人机协同路径规划(可以自定义无人机数量及起始点),MATLAB代码
本文介绍了猛禽优化算法(BPBO)及其在无人机路径规划中的应用。BPBO是一种新型元启发式算法,模拟猛禽的狩猎行为进行优化。无人机路径规划模型以最小化路径长度为目标,同时考虑安全性和可行性约束,包括障碍物规避、高度限制和平滑性要求。通过欧几里得距离计算路径成本,并建立多约束条件下的总体成本函数。实验部分展示了不同数量无人机的路径规划结果,验证了BPBO算法在解决复杂路径优化问题中的有效性。该研究为无人机群体协同作业提供了新的优化方法。原创 2025-08-06 22:59:09 · 479 阅读 · 0 评论 -
基于烟花算法(Fireworks Algorithm,FWA)及三次样条的机器人路径规划,50个场景任意选择,完整MATLAB代码
烟花算法(Fireworks Algorithm,FWA)是一种受烟花爆炸产生火星启发的群体智能优化算法,由谭营教授等人于2010年提出。原创 2025-03-29 20:09:04 · 1319 阅读 · 0 评论 -
基于鹅优化算法GOOSE及三次样条的机器人路径规划,50个场景任意选择,完整MATLAB代码
鹅优化算法(GOOSE Algorithm,GOOSE)从鹅的休息和觅食行为获得灵感,当鹅听到任何奇怪的声音或动作时,它们会发出响亮的声音来唤醒群中的个体,并保证它们的安全。参考文献原文链接:https://blog.csdn.net/weixin_46204734/article/details/139906134。原创 2025-03-29 19:51:27 · 782 阅读 · 0 评论 -
基于蛇鹫优化算法SBOA及三次样条的机器人路径规划,50个场景任意选择,完整MATLAB代码
蛇鹫优化算法(Secretary bird optimization algorithm,SBOA)由 Fu Youfa等人于2024年提出,该算法的灵感来自于蛇鹫在自然环境中的生存行为。参考文献:原文链接:https://blog.csdn.net/weixin_46204734/article/details/139331352。原创 2025-03-29 19:40:34 · 944 阅读 · 0 评论 -
基于河马优化算法HO及三次样条的机器人路径规划,50个场景任意选择,完整MATLAB代码
河马优化算法(Hippopotamus optimization algorithm,HO)由Amiri等人于2024年提出,该算法模拟了河马在河流或池塘中的位置更新、针对捕食者的防御策略以及规避方法。河马优化算法的灵感来自河马生活中观察到的三种突出行为模式。河马群由几只雌性河马、河马幼崽、多只成年雄性河马和一只占主导地位的雄性河马(牛群的领导者)组成.由于它们与生俱来的好奇心,幼崽和小河马经常表现出远离群体的倾向。因此,它们可能会变得孤立并成为捕食者的目标。原创 2025-03-29 19:25:11 · 1141 阅读 · 0 评论 -
基于部落竞争与成员合作算法CTCM及三次样条的机器人路径规划,50个场景任意选择,完整MATLAB代码
部落竞争与成员合作算法(Competition of tribes and cooperation of members algorithm,CTCM)由 Chen Zuyan等人于2024年提出的一种智能优化算法。该算法受古代部落之间竞争及其合作行为的启发而得。参考文献:原文链接:https://blog.csdn.net/weixin_46204734/article/details/145190813。原创 2025-03-29 19:11:23 · 1493 阅读 · 0 评论 -
基于山羊优化算法(Goat Optimization Algorithm, GOA)及三次样条的机器人路径规划,50个场景任意选择,完整MATLAB代码
山羊优化算法(Goat Optimization Algorithm, GOA)是2025年提出的一种新型生物启发式元启发式算法,灵感来源于山羊在恶劣和资源有限环境中的适应性行为。该算法旨在通过模拟山羊的觅食策略、移动模式和躲避寄生虫的能力,有效平衡探索和开发,以解决全局优化问题。原创 2025-03-29 11:30:49 · 2073 阅读 · 0 评论 -
基于阿尔法进化(Alpha Evolution,AE)算法及三次样条的机器人路径规划,50个场景任意选择,完整MATLAB代码
阿尔法进化(Alpha Evolution,AE)算法是2024年提出的一种新型进化算法,其核心在于通过自适应基向量和随机步长的设计来更新解,从而提高算法的性能。以下是AE算法的主要步骤和特点:主要步骤初始化:在搜索空间中随机生成一组候选解,并评估其质量。Alpha算子:通过采样候选解构建进化矩阵,并通过矩阵的对角线或加权操作估计种群状态。为了增强每一代估计的相关性,设计了两个进化路径来积累估计结果并实现基向量的自适应。原创 2025-03-29 11:11:27 · 1080 阅读 · 0 评论 -
六种最新优化算法(CCO、TOC、MSO、DOA、GOA、OX)求解多个无人机协同路径规划(可以自定义无人机数量及起始点),MATLAB代码
杜鹃鸟鲶鱼优化(Cuckoo Catfish Optimizer,CCO)算法模拟了杜鹃鸟鲶鱼的搜索、捕食和寄生慈鲷行为。该算法的早期迭代侧重于执行多维包络搜索策略和压缩空间策略,并结合辅助搜索策略来有效限制慈鳔的逃逸空间。此阶段确保对解决方案空间进行广泛探索。在迭代的中间阶段,该算法采用过渡策略促进从勘探到开发的平滑过渡,赋予了算法一定的勘探能力和开发能力。在后期阶段,该算法使用混沌捕食机制在慈鳷周围制造干扰,以提高对最优解的利用。原创 2025-03-27 21:03:17 · 1257 阅读 · 0 评论 -
基于杜鹃鸟鲶鱼优化(Cuckoo Catfish Optimizer,CCO)算法的多个无人机协同路径规划(可以自定义无人机数量及起始点),MATLAB代码
杜鹃鸟鲶鱼优化(Cuckoo Catfish Optimizer,CCO)算法模拟了杜鹃鸟鲶鱼的搜索、捕食和寄生慈鲷行为。该算法的早期迭代侧重于执行多维包络搜索策略和压缩空间策略,并结合辅助搜索策略来有效限制慈鳔的逃逸空间。此阶段确保对解决方案空间进行广泛探索。在迭代的中间阶段,该算法采用过渡策略促进从勘探到开发的平滑过渡,赋予了算法一定的勘探能力和开发能力。在后期阶段,该算法使用混沌捕食机制在慈鳷周围制造干扰,以提高对最优解的利用。原创 2025-03-27 20:45:53 · 1191 阅读 · 0 评论 -
六种最新优化算法(TOC、MSO、AE、DOA、GOA、OX)求解多个无人机协同路径规划(可以自定义无人机数量及起始点),MATLAB代码
阿尔法进化(Alpha Evolution,AE)算法是2024年提出的一种新型进化算法,其核心在于通过自适应基向量和随机步长的设计来更新解,从而提高算法的性能。参考文献:原文链接:https://blog.csdn.net/weixin_46204734/article/details/146267896。原创 2025-03-16 12:42:30 · 2050 阅读 · 0 评论 -
五种最新优化算法(MSO、AE、DOA、GOA、OX)求解多个无人机协同路径规划(可以自定义无人机数量及起始点),MATLAB代码
阿尔法进化(Alpha Evolution,AE)算法是2024年提出的一种新型进化算法,其核心在于通过自适应基向量和随机步长的设计来更新解,从而提高算法的性能。参考文献:原文链接:https://blog.csdn.net/weixin_46204734/article/details/146267896。原创 2025-03-16 12:18:30 · 1755 阅读 · 0 评论 -
五种最新优化算法(ALA、AE、DOA、GOA、OX)求解多个无人机协同路径规划(可以自定义无人机数量及起始点),MATLAB代码
阿尔法进化(Alpha Evolution,AE)算法是2024年提出的一种新型进化算法,其核心在于通过自适应基向量和随机步长的设计来更新解,从而提高算法的性能。参考文献:原文链接:https://blog.csdn.net/weixin_46204734/article/details/146267896。原创 2025-03-16 12:05:24 · 1320 阅读 · 0 评论 -
四种最新优化算法(AE、DOA、GOA、OX)求解多个无人机协同路径规划(可以自定义无人机数量及起始点),MATLAB代码
阿尔法进化(Alpha Evolution,AE)算法是2024年提出的一种新型进化算法,其核心在于通过自适应基向量和随机步长的设计来更新解,从而提高算法的性能。参考文献:原文链接:https://blog.csdn.net/weixin_46204734/article/details/146267896。原创 2025-03-16 11:50:23 · 1154 阅读 · 0 评论 -
基于梦境优化算法(Dream Optimization Algorithm, DOA)的多个无人机协同路径规划(可以自定义无人机数量及起始点),MATLAB代码
梦境优化算法(Dream Optimization Algorithm, DOA)是一种新型的元启发式算法(智能优化算法),其灵感来源于人类梦境的启发。在有做梦经历的快速眼动睡眠期间,低频脑电波的功率降低,而高频脑电波的功率增加,这表明在做梦经历期间大脑的神经兴奋更大。原创 2025-03-16 11:18:25 · 1698 阅读 · 0 评论 -
基于牛优化( OX Optimizer,OX)算法的多个无人机协同路径规划(可以自定义无人机数量及起始点),MATLAB代码
牛优化( OX Optimizer,OX)算法由 AhmadK.AlHwaitat 与 andHussamN.Fakhouri于2024年提出,该算法的设计灵感来源于公牛的行为特性。公牛以其巨大的力量而闻名,能够承载沉重的负担并进行远距离运输。这种行为特征可以被转化为优化过程中的优势,即在探索广阔而复杂的搜索空间时保持强大的鲁棒性。公牛不仅强壮,还具有灵活性、稳健性、适应性和协作能力等特点。这些特点使得OX优化器能够在不断变化的环境和优化需求中有效地找到最优解。原创 2025-03-15 13:30:04 · 1161 阅读 · 0 评论 -
基于改进型雪雁算法(Improved Snow Geese Algorithm, ISGA) 的多个无人机协同路径规划(可以自定义无人机数量及起始点),MATLAB代码
雪雁算法(Snow Geese Algorithm,SGA)是2024年提出的一种新型元启发式算法,其灵感来源于雪雁的迁徙行为,特别是它们在迁徙过程中形成的独特“人字形”和“直线”飞行模式。该算法通过模拟雪雁的飞行行为,实现了在解空间中的高效搜索和优化。SGA算法主要分为三个阶段:初始化阶段、探索阶段和开发阶段。原创 2025-03-15 13:07:46 · 1713 阅读 · 0 评论 -
SD-MTSP:部落竞争与成员合作算法求解单仓库多旅行商问题(提供MATLAB代码,可以修改旅行商个数及起点)
第6个旅行商的路径:13->20->2->26->9->5->28->1->27->13。第1个旅行商的路径:13->15->17->22->11->13。第2个旅行商的路径:13->18->10->3->29->13。第4个旅行商的路径:13->21->4->14->19->13。第5个旅行商的路径:13->16->23->7->25->13。第3个旅行商的路径:13->6->12->8->24->13。第3个旅行商的总路径长度:1157.497300。第6个旅行商的总路径长度:1179.237041。原创 2025-01-04 13:57:33 · 1022 阅读 · 0 评论 -
大规模装箱问题:部落竞争与成员合作算法(Competition of tribes and cooperation of members algorithm,CTCM)解二维装箱问题,MATLAB代码
部落竞争与成员合作算法(Competition of tribes and cooperation of members algorithm,CTCM)由 Chen Zuyan等人于2024年提出的一种智能优化算法。原文链接:https://blog.csdn.net/weixin_46204734/article/details/144927619。假设一共有300个箱子,如何设计算法,使得选择部分箱子放入80*80的甲板上,让甲板的装载率越大,要求箱子间不得重叠。原创 2025-01-04 13:13:56 · 408 阅读 · 0 评论 -
部落竞争与成员合作算法(Competition of tribes and cooperation of members algorithm)的复杂城市地形下无人机避障三维航迹规划(Matlab代码)
部落竞争与成员合作算法(Competition of tribes and cooperation of members algorithm,CTCM)由 Chen Zuyan等人于2024年提出的一种智能优化算法。原文链接:https://blog.csdn.net/weixin_46204734/article/details/144927619。%终点点位置 横坐标与纵坐标需为50的倍数。fprintf("路径长度:%f\n",result.fit);fprintf("路径坐标:\n");原创 2025-01-04 12:58:32 · 841 阅读 · 0 评论 -
无人机航迹规划:部落竞争与成员合作算法(Competition of tribes and cooperation of members algorithm,CTCM)求解无人机路径规划MATLAB
单个无人机三维路径规划问题及其建模_无人机路径规划场景建模-CSDN博客参考文献[1]胡观凯,钟建华,李永正,黎万洪.基于IPSO-GA算法的无人机三维路径规划[J].现代电子技术,2023,46(07):115-120。原创 2025-01-04 12:42:06 · 607 阅读 · 0 评论 -
基于部落竞争与成员合作算法(Competition of tribes and cooperation of members ,CTCM)的无人机三维路径规划(提供MATLAB代码)
无人机三维路径规划是指在三维空间中为无人机规划一条合理的飞行路径,使其能够安全、高效地完成任务。路径规划是无人机自主飞行的关键技术之一,它可以通过算法和模型来确定无人机的航迹,以避开障碍物、优化飞行时间和节省能量消耗。部落竞争与成员合作算法(Competition of tribes and cooperation of members algorithm,CTCM)由 Chen Zuyan等人于2024年提出的一种智能优化算法。该算法受古代部落之间竞争及其合作行为的启发而得。原创 2025-01-04 12:06:14 · 815 阅读 · 0 评论 -
FJSP:部落竞争与成员合作算法(Competition of tribes and cooperation of members ,CTCM)求解柔性作业车间调度问题(FJSP),MATLAB代码
部落竞争与成员合作算法(Competition of tribes and cooperation of members algorithm,CTCM)由 Chen Zuyan等人于2024年提出的一种智能优化算法。该算法受古代部落之间竞争及其合作行为的启发而得。原创 2025-01-04 09:58:13 · 942 阅读 · 0 评论 -
FJSP:河马优化算法(Hippopotamus optimization algorithm,HO)求解柔性作业车间调度问题(FJSP),提供MATLAB代码
河马优化算法(Hippopotamus optimization algorithm,HO)由Amiri等人于2024年提出的一种模拟自然界中河马觅食行为的新型群体智能优化算法。该算法由Mohammad Hussein Amiri等人于2024年2月发表在Nature旗下子刊《Scientific Reports》上。HO算法的灵感来源于河马生活中的三种突出行为模式:幼河马由于好奇心而偏离群体的倾向;河马的防御性行为,当受到捕食者攻击或其他生物侵入领地时触发;河马逃离捕食者的行为。原创 2025-01-04 09:31:55 · 1288 阅读 · 0 评论 -
基于PWLCM混沌映射的麋鹿群优化算法(Elk herd optimizer,EHO)的多无人机协同路径规划,MATLAB代码
单个无人机三维路径规划数学模型参考如下文献:Phung M D , Ha Q P . Safety-enhanced UAV Path Planning with Spherical Vector-based Particle Swarm Optimization[J]. arXiv e-prints, 2021.每个无人机的目标函数由路径长度成本,安全性与可行性成本、飞行高度成本和路径平滑成本共同组成:路径长度成本由相邻两个节点之间的欧氏距离和构成,其计算公式如下:路径安全性与可行性成本通过下式计算:飞原创 2024-12-22 13:29:55 · 1148 阅读 · 0 评论 -
改进型粒子群优化算法(IPSO)的无人机三维路径规划,MATLAB代码
粒子群优化算法(Particle Swarm Optimization,简称PSO)是一种基于群体智能的优化算法,由James Kennedy和Russell Eberhart于1995年提出。PSO模拟了鸟群或鱼群的社会行为,通过群体中个体的合作与竞争来实现全局最优解的搜索。PSO属于进化算法的一种,与遗传算法(GA)类似,但PSO没有进化操作符如交叉和变异,而是通过粒子(即候选解)在问题空间中的飞行来寻找最优解。原创 2024-12-22 12:30:57 · 532 阅读 · 0 评论 -
SDMTSP:吸血水蛭优化器(Blood-Sucking Leech Optimizer,BSLO)求解单仓库多旅行商问题,可以更改数据集和起点(MATLAB代码)
第3个旅行商的路径:13->27->23->7->25->14->18->10->3->12->6->13。第2个旅行商的路径:13->16->19->11->22->17->15->4->2->21->13。第6个旅行商的路径:13->14->17->22->11->25->23->27->16->13。第1个旅行商的路径:13->24->8->28->1->5->9->26->29->20->13。第2个旅行商的路径:13->2->10->18->4->13。原创 2024-12-20 22:02:09 · 625 阅读 · 0 评论 -
SDMTSP:黑翅鸢算法(Black-winged kite algorithm,BKA)求解单仓库多旅行商问题,可以更改数据集和起点(MATLAB代码)
第5个旅行商的路径:13->1->24->27->23->8->12->21->2->13。第6个旅行商的路径:13->2->3->21->27->23->12->9->20->13。第1个旅行商的路径:13->25->7->11->20->28->13。第2个旅行商的路径:13->4->18->17->22->14->13。第4个旅行商的路径:13->16->15->10->29->6->13。第3个旅行商的路径:13->5->9->26->3->19->13。原创 2024-12-20 21:51:15 · 1055 阅读 · 0 评论 -
SDMTSP:人工原生动物优化器(Artificial Protozoa Optimizer ,APO)求解单仓库多旅行商问题,可以更改数据集和起点(MATLAB代码)
第2个旅行商的路径:13->23->19->11->18->10->15->25->7->27->13。第3个旅行商的路径:13->1->6->9->5->29->21->14->22->17->4->13。第1个旅行商的路径:13->16->24->8->28->12->26->3->2->20->13。第3个旅行商的路径:13->25->16->27->24->1->5->21->13。第1个旅行商的路径:13->15->18->2->3->26->6->28->13。原创 2024-12-20 21:38:33 · 969 阅读 · 0 评论 -
SDMTSP:粒子群优化算法PSO求解单仓库多旅行商问题,可以更改数据集和起点(MATLAB代码)
PSO算法中,每个解被看作是在搜索空间中的一个粒子,每个粒子代表了问题的潜在解,并具有位置和速度两个属性。个体历史最优位置是粒子自身所找到的最优解,而群体历史最优位置是整个粒子群中所有粒子所找到的最优解。单仓库多旅行商问题(Single-Depot Multiple Travelling Salesman Problem, SD-MTSP):𝑚个推销员从同一座中心城市出发,访问其中一定数量的城市并且每座城市只能被某一个推销员访问一次,最后返回到中心城市,通常这种问题模型被称之为SD-MTSP。原创 2024-12-20 21:28:24 · 695 阅读 · 0 评论