自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(23)
  • 收藏
  • 关注

原创 深入Transformer架构:从“注意力是一切“到亲手搭建模型

本文分享了学习Transformer架构的深入体会。从注意力机制的字典类比到数学公式推导,作者理解了Transformer如何通过并行计算、直接连接和掩码机制解决RNN的串行计算缺陷。多头注意力、位置编码等设计展现了数学之美与工程智慧的完美结合。通过亲手实现模型代码,作者认识到理论与实践的相辅相成,并反思了Transformer架构背后"简单规则产生复杂现象"的哲学内涵。文章揭示了Transformer的成功并非偶然,而是从第一性原理出发的系统设计成果,为后续学习大语言模型奠定了坚实基础。

2025-06-17 19:58:20 839

原创 始理解NLP:我的第一章学习心得

本文分享了学习NLP基础概念的体会,从最初认为NLP仅是"让机器懂人话"的简单理解,到认识到其多学科交叉的本质。文章梳理了NLP从1940年代图灵测试到现代大语言模型的发展历程,重点分析了中文分词、实体识别等核心任务的技术难点,以及文本表示从稀疏向量到Word2Vec、ELMo的演进突破。作者总结出NLP发展遵循"发现问题-创新方法-验证效果-发现新问题"的循环模式,强调理解技术历史对掌握现代AI的重要性,为后续学习Transformer架构打下基础。

2025-06-16 19:31:32 915

原创 【强化学习哲学 Day 2】SARSA - 现实主义者的智慧

共情钩子:"人生十字路口"算法核心:"给决定打分,修正判断"哲学升华:"在不确定中寻找确定"金句收尾:"智慧在经历中习得"

2025-06-02 09:00:00 902

原创 【强化学习哲学 Day 1】Q-Learning - 在不确定中寻找确定

通过三种视角展开:1️⃣故事篇描述人们面对职业选择时的迷茫与试错;2️⃣算法篇揭示Q-Learning中"状态-行动-奖励"的学习机制,指出人生价值判断通过经验不断更新;3️⃣哲学篇阐释探索与利用的永恒矛盾,提出"为寻最优必先试错"的成长悖论。文章最终升华指出:真正的人生智慧是在不确定中通过实践逐步构建的价值函数,没有标准答案,只有持续优化的个性化选择路径。

2025-06-01 15:35:41 696

原创 wow-agent

wow-agent致力于在代码行数和依赖库数量之间取得均衡的最小值,用最划算的方式帮助您在本地搭建AI Agent,嵌入到您的生产工作环节中Agent 核心组件:模型、工具、编排层模型-- 用于理解输入、进行推理和决策工具-- 是Agent与外界的连接点,用于执行实际操作(如查询数据、调用外部API等)编排层是“指挥官”,负责协调整个过程的运行,确保任务执行的逻辑性和高效性在AI Agent的工作流程中,用户首先提供输入,编排层接收并将其传递给模型。

2025-02-11 22:23:11 225

原创 Task 01 入门基础

序列转换灵活性边界标记重要性填充机制的利弊实际应用价值。

2025-02-10 22:16:06 990

原创 多智能体博弈

多智能体博弈(Multi-agent Game)是一种场景,在这个场景中,多个智能体为了达成各自的目标,不断地进行决策和行动。这些智能体就像我们生活中的玩家一样,它们可能需要合作,比如无人机一起完成包裹递送;也可能彼此竞争,比如自动驾驶车辆争取道路优先权。

2024-10-04 11:43:29 1490

原创 强化学习指南:训练过程与评估过程的区别

在强化学习(RL)中,训练和评估是两个截然不同但密切相关的过程。本指南将详细解释这两个过程的区别,以及如何正确实施它们。

2024-09-08 17:58:29 1159

原创 深入解析多智能体强化学习算法的训练效率

在多智能体强化学习(MARL)领域,不同算法的训练效率和最终性能差异显著。本文将深入分析几种主流MARL算法的训练特性,探讨影响其效率的关键因素。

2024-09-08 17:35:37 1673

原创 多体路径规划中的状态与状态转移设计

状态转移是从一个状态变化到另一个状态的过程。在我们的棋盘游戏类比中,移动一个棋子就是一次状态转移。

2024-09-05 18:47:08 1145

原创 科研场景图指南:核心凸显问题

确定环境边界标识静态和动态障碍物定义可行的移动区域。

2024-09-05 18:33:04 456

原创 MAPPO:超参数篇

Multi-Agent Proximal Policy Optimization (MAPPO) 是一种强大的多智能体强化学习算法,它将PPO的稳定性扩展到多智能体环境中。本文将深入探讨MAPPO的理论基础、实现细节、关键超参数、优化策略以及在实际应用中的表现。

2024-09-04 19:17:13 2464

原创 强化学习环境设计:从接口角度的深度分析

本文深入探讨了强化学习环境的接口设计。核心接口包括reset()、step()、render()方法,以及action_space和observation_space属性。文章详细分析了这些接口的实现原则,强调了清晰性、一致性和可扩展性。通过灵活的接口设计,可以实现各种复杂环境,如部分可观察、多智能体和参数化环境。文章还讨论了如何通过接口与主流框架集成,以及使用高级设计模式来处理复杂场景。

2024-09-04 18:49:16 1291

原创 深入理解DDQN

通过Alex的探索故事和技术解释,我们可以看到DDQN如何巧妙地解决了DQN中的过估计问题。DDQN的核心思想是通过使用两个网络来解耦动作的选择和评估,从而得到更准确的Q值估计。在实践中,实现DDQN需要注意网络结构、经验回放、目标计算和网络更新等关键点。通过这些技术,DDQN能够在多个强化学习任务中取得比DQN更好的性能。理解DDQN不仅有助于掌握这个特定的算法,还能帮助我们更深入地思考如何改进强化学习算法。

2024-09-03 20:50:41 1867

原创 强化学习入门:奖励函数篇

在强化学习(RL)中,奖励函数的设计是决定智能体行为的关键因素。它不仅定义了任务的目标,还塑造了智能体学习的路径。本文将以导航问题为背景,深入探讨奖励函数的设计过程,从基本原理到高级技巧,全面分析如何构建有效的奖励函数。

2024-09-03 20:40:44 5338

原创 Transformer模型入门:简单而直观的解释

Transformer是人工智能领域的革命性突破,彻底改变了机器处理和理解信息的方式。其核心是创新的"注意力机制",通过QKV(查询、键、值)结构,实现了对复杂数据的高效并行处理。Transformer不仅在自然语言处理中表现卓越,还在图像生成、音乐创作等领域展现出惊人潜力。它的出现极大提升了AI的能力,为ChatGPT等先进应用奠定了基础,开启了人工智能的新纪元。了解Transformer,就是洞悉当代AI革命的关键。

2024-09-02 18:53:32 490

原创 深入掌握Transformer模型

编码器处理整篇文章解码器生成摘要,每次生成一个词。

2024-09-02 18:51:30 1224

原创 多智能体环境设计(三)

探讨了多智能体环境的高级设计概念,包括复杂场景创建、智能体交互机制、环境动态性和适应性,以及协作与竞争平衡。通过仓库管理系统的示例,展示了如何实现异构智能体、动态环境元素、通信系统和资源竞争。这些高级特性使得多智能体环境更接近真实世界,为解决复杂问题提供了基础。

2024-09-01 15:36:32 952

原创 多智能体环境设计(二)

环境与接口实现

2024-09-01 09:01:15 1377

原创 多智能体环境设计(一)

本文探讨多智能体环境设计的核心概念。多智能体环境特征包括交互性、自主性、复杂性和动态性。设计考虑因素涵盖智能体定义、状态空间、观察机制、动作空间、奖励机制、交互模式、环境动态和终止条件。接口设计强调标准化、灵活性、可扩展性、可观察性和效率。此类环境设计需要系统思维,平衡多种复杂因素。

2024-08-31 22:07:38 1180

原创 强化学习自定义环境基础知识

gym 指南解读

2024-08-31 10:30:00 1360

原创 强化学习自定义环境(二)

本文是强化学习环境创建的进阶教程,主要内容包括:连续动作空间:从离散网格世界升级到连续2D平面,更贴近现实世界的控制问题。复杂奖励函数设计:介绍了多因素奖励函数,包括距离、速度、接近目标和边界惩罚等元素。环境随机性:通过动作噪声和随机目标位置,增加环境的不确定性和学习难度。障碍物实现:在2D世界中添加随机障碍物,提高环境的复杂度和挑战性。Gym Wrapper使用:展示如何使用Wrapper增强环境功能,例如记录智能体轨迹。

2024-08-30 11:36:32 866 1

原创 强化学习自定义环境(一)

本教程旨在指导初学者理解和创建OpenAI Gym强化学习环境。主要内容包括:OpenAI Gym基础组件介绍:环境、观察空间、动作空间、奖励函数、重置函数和步进函数。实践案例:创建一个简单的5x5网格世界环境,智能体需要从左上角移动到右下角。环境实现:逐步讲解如何定义环境类、实现各个必要的方法(如__init__、reset、step、render)。代码示例:提供完整的Python代码,展示如何使用Gym框架创建自定义环境。环境测试:演示如何初始化和使用创建的环境,模拟智能体的简单行为。

2024-08-30 11:04:57 1745 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除