🎭 故事:那个总是"应该"与"实际"之间摇摆的你
深夜十二点,你盯着电脑屏幕上的计划表。
理论上,你应该每天早上六点起床晨练,七点到实验室,十点前完成最重要的工作,下午读论文,晚上总结反思。这是最优策略,效率最高,成长最快。
实际上,你昨天晚上又刷到了凌晨两点,今天自然醒已经是上午十点。匆忙赶到实验室,先回复堆积如山的消息,然后被各种杂事打断,真正专注的时间也就两三个小时。
你开始怀疑那些时间管理大师的建议。他们总说要"追求最优",要"突破舒适圈",要"严格自律"。但现实是,你就是那个会拖延、会分心、会在深夜陷入思考漩涡的普通人。
渐渐地,你学会了一种新的策略:不再追求理论最优,而是基于真实的自己制定可行的计划。
你知道自己不是早起的人,所以把重要工作安排在下午精神最好的时候;你知道自己容易被干扰,所以主动创造不被打扰的环境;你知道自己需要缓冲时间,所以在计划里留出余量。
这样的策略也许不是"最优"的,但它是可持续的,是真实的,是属于你的。
💡 算法的智慧:SARSA的现实主义
你的转变,正体现了SARSA算法的核心智慧。
如果说Q-Learning是理想主义者——总是假设你会做出最优选择,那么SARSA就是现实主义者——它会考虑你实际上会做什么选择。
Q-Learning的更新公式:
Q(s,a) += α × [r + γ × max Q(s’,a’) - Q(s,a)]
(基于下一步的最优行动来更新)
SARSA的更新公式:
Q(s,a) += α × [r + γ × Q(s’,a’) - Q(s,a)]
(基于下一步实际会采取的行动来更新)
这个细微的差别,体现了两种截然不同的人生哲学:
- Q-Learning:我应该基于理论最优来评估选择
- SARSA:我应该基于现实可能来评估选择
SARSA的全称是State-Action-Reward-State-Action,它不仅要知道你现在的状态和行动,还要知道你在新状态下实际会采取什么行动。它承认一个残酷的现实:理论最优和实际可行之间,往往存在巨大鸿沟。
🤔 哲学的思辨:知行合一的现代解读
SARSA让我想起了王阳明的"知行合一"——真正的知识必须能够指导实际行动,脱离行动的知识是虚假的知识。
更深层的,这触及了现实主义哲学的核心观点:我们必须基于事物的真实状态,而非理想状态来做出判断。
亚里士多德在《尼各马可伦理学》中提到"实践智慧"(phronesis)——在具体情境中做出正确判断的能力。SARSA体现的正是这种智慧:它不追求抽象的完美,而是在具体的约束条件下寻找最好的可能。
这里有一个深刻的洞察:有时候,承认局限比追求完美更有价值。
SARSA算法会学习到这样的策略:如果你知道自己在某种情况下容易做出冲动决定,那么最好避免进入那种情况。这就像一个了解自己脾气的人,会主动避开可能引发冲突的场景一样。
🌟 现实的升华:接纳不完美的力量
斯多葛学派有一句名言:"改变能改变的,接受不能改变的,拥有区分两者的智慧。"SARSA算法的精髓正在于此——它不是放弃进步,而是在承认现实的基础上寻求最好的可能。
每个学会与自己和解的人,都在运行着SARSA算法。
每个不再追求完美作息而是找到适合自己节奏的人,每个不再模仿他人成功模式而是走出自己道路的人,每个不再苛求自己而是温和坚持的人——我们都在用SARSA的方式生活。
这种智慧体现在:
- 制定计划时考虑自己的真实执行力
- 设定目标时平衡理想与现实
- 评估选择时基于实际可能而非理论最优
- 接纳不完美的自己,在此基础上持续改进
SARSA告诉我们:真正的智慧不是追求理论完美,而是在现实约束下做到最好。
不是每个人都能成为早起的人,但每个人都能找到属于自己的高效时间。不是每个选择都有标准答案,但每个人都能基于真实的自己做出最适合的选择。
这就是现实主义的温柔,也是算法给予人生的启示:完美是理想,可行是智慧。
今日思考:在你的生活中,有哪些"理论最优"的建议实际上并不适合你?你是如何找到属于自己的可行策略的?
明日预告:如果SARSA教会我们在当下做出现实的选择,那么明天的Monte Carlo方法会告诉我们另一种智慧——有时候,只有走完全程,才能真正理解每个选择的价值。就像人生,只有回望时,才能看清每段经历的意义。
#强化学习 #技术哲学 #现实主义 #SARSA