普通邻接矩阵(类型torch.Tensor)转为torch.sparse_coo稀疏矩阵

这篇博客介绍了如何在PyTorch中将一个普通的邻接矩阵,即稠密矩阵,转换成torch.sparse_coo格式的稀疏矩阵,这是深度学习中处理大规模数据时常用的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

普通矩阵:

adj <class 'torch.Tensor'> tensor([[10.0527,  0.7901,  4.7365,  ..., -2.9740, -1.2431,  2.6618],
        [ 0.7901,  7.8155,  2.0635,  ..., -0.7821,  0.8580, -1.8541],
        [ 4.7365,  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值