- 博客(11)
- 收藏
- 关注
原创 C-MAPSS数据集详细介绍
第一列同样是样本序号,从1-100,也是100个样本,第二列是采集数据的时序,上述样本1含有从1到31次时序采集的状态数据,预测未来发生故障前剩余的时序次数,及剩余的url,真实的url标签存放在RUL_FD001中。当前基于机器学习的剩余寿命预测方法的研究异常火爆,其中C-MAPSS数据集在该领域的使用非常广泛,为了方便各位同仁的学习和理解,借此文章向大家简单介绍一下。第一列表示样本序号,样本序号从1-100即共100个样本,第二列表示采集数据的时序,直到发生故障:即样本1发生故障前的192个时序数据。
2024-05-21 19:35:39
4651
1
原创 基于ResNet50的人脸表情识别实战(数据集fer2013、CK+)
采用基于resnet50的人脸表情识别方法,在CK+数据集准确率达98%,在fer2013数据集准确率达90%。共35887张图片;
2024-05-21 11:20:46
1868
原创 时序数据的多步预测(使用skforecast.model_selection_multiseries,多系列一起预测)
对各设备进行未来24小时(12时段,2小时为一个时段)的oee预测,使用skforecast.model_selection_multiseries通过BY工站进行多设备的预测,并使用。grid_search_forecaster_multiseries进行参数调优。
2023-11-13 17:46:11
280
原创 生产设备的未来oee多期预测
每个设备,过去oee数据如上,预测未来12期的oee,采用skforecast结合sklearn中的多种回归模型进行预测,对比效果,得到可快速实现多步预测的最佳方案。#使用LGBMRegressor进行模型训练。
2023-11-13 09:34:14
228
原创 知识图谱。pg数据库批量导入neo4j中
l.load_entity_and_2_relationship(source,table_info,'''文檔''','''{name:row.attachment}''','''員工''','''{工號:row.author_no}''','''作者是''','''上傳的文檔有''')def load_node(self,source,query,label,check): # 抽取节点数据(source:数据来源类型,query:查询语句,label:节点标签)
2023-07-14 14:44:01
392
1
原创 知识图谱、pg结构化数据中的三元组导入图数据库neo4j,附代码
driver = GraphDatabase.driver('bolt://localhost:7687', auth=('test', '11'))#本地neo4j。def get_driver(self): # 获取neo4j的session。def run_cypher(self,cypher): # 运行cypher。
2023-07-14 14:17:18
525
1
原创 多分类模型评价指标、recall、precision、f1、accuracy的计算,附代码
plt.title('LightGBM_混淆矩阵', fontsize=12, fontfamily="SimHei") # 可设置标题大小、字体。plt.xticks(indices, classes, rotation=45) # 设置横坐标方向,rotation=45为45度倾斜。for j in range(len(confusion[i])): # 第几列。plt.figure(figsize=(4, 4)) # 设置图片大小。plt.colorbar() # 右边的colorbar。
2023-07-14 11:21:53
974
2
原创 结合XAI的AutoEncoder无监督异常侦测
近年来,随着XAI的兴起,使得AI是可解释的、可信任的、可优化的,目前将新技术XAI运用于冰机、空压机等设备的PHM的案例较少,对于实时数据监测的PHM,采用XAI进行异常解释可得到不错的效果,本文使用无监督学习中的自编码技术对时序数据进行异常侦测,采用可解释器shap进行异常原因定位。explainer = shap.DeepExplainer(model=model, data=torch.from_numpy(X[:200].astype(np.float32)))#得到shap基线。
2023-06-08 16:09:10
303
原创 Cannot perform ‘rand_‘ with a dtyped [object] array and scalar of type [bool]
base_data=base_df[(base_df['機種']==float(mode)) & (base_df['顏色']==number[0]) & (base_df['結構']==number[1])]base_data=base_df[base_df['機種']==float(mode) & base_df['顏色']==number[0] & base_df['結構']==number[1]]报错,改为下面的,加括号即可。
2023-03-30 15:14:33
797
1
原创 python多进程报错 This probably means that you are not using fork to start your child processes an
python多进程报错 This probably means that you are not using fork to start your child processes an
2022-12-03 19:29:41
2094
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人