MATLAB - 机械臂手眼标定(眼在手外) - 估算固定相机相对于机器人基座的姿态

系列文章目录

目录

系列文章目录

前言

一、估算相机固有参数

二、收集手眼校准数据

三、计算摄像机外特性和末端执行器姿势

3.1 估算摄像机外特性

3.2 计算末端执行器姿态

四、解决校准问题

五、可视化摄像机坐标系与机器人基本坐标系的关系


前言

        在拾取和放置任务中,例如垃圾桶拾取,通常会在环境中的固定位置安装摄像头,以便机器人操纵器检测工作区中的物体。基本感知管道使用该摄像头来估计目标物体相对于摄像头坐标系的姿态。然后将该姿态转换到机器人的基准坐标系,使机器人能够成功地用末端执行器拾取物体。要将物体的姿态转换到机器人基座坐标系,首先必须确定摄像机相对于机器人基座的姿态。本图显示了这种拾放构型以及所需的同质变换矩阵 TCameraToBase,它可将摄像机坐标系中的姿势变换到机器人底座坐标系中。

        由于这些因素的影响,确定相机坐标系的准确姿态成为难题:

      

<think>好的,我需要回答用户关于手眼标定中“在手上”的实现步骤的问题。首先,我需要回顾一下手眼标定的基本概念,确保自己理解正确。手眼标定主要分为两种:“在手上”(eye-in-hand)和“在手”(eye-to-hand)。用户已经提到了后者,现在需要了解前者。 根据之前提供的引用内容,引用[1]提到了3D视觉机器人手眼标定在手),而引用[2]则涉及MATLAB中的实现方法。但用户现在询问的是“在手上”,所以需要调整思路。首先,我应该明确两者的区别。在手上是指相机安装在机械的末端执行器上,随机械移动,而在手则是相机固定在工作空间某处。 接下来,我需要整理在手上的标定步骤。通常,手眼标定的核心是求解相机坐标系与机械末端坐标系之间的变换矩阵。对于在手上,这个矩阵通常是固定的,因为相机随着末端移动。标定过程中需要收集多个位置的机械末端姿态和对应的相机参,然后通过数学方法求解变换矩阵。 根据引用[1]中的方法,虽然它讨论的是在手,但数学原理可能有相似之处。例如,都需要通过多个位姿的数据来建立方程。而引用[2]提到了使用校准数据中的参和末端执行器姿态估算变换矩阵,这可能同样适用于在手上的情况,只是目标变换不同。 现在,我需要分步骤解释实现过程。首先,数据采集:让机械末端移动到不同位姿,同时记录每个位姿下末端到基座的变换矩阵,以及相机拍摄标定板的参(标定板到相机的变换)。然后,建立方程:对于每个位姿,末端到基座的变换(T_end_to_base)乘以相机到末端的变换(T_cam_to_end)等于标定板到基座的变换(T_target_to_base)乘以标定板到相机的变换(T_target_to_cam)的逆。这可以转化为AX=XB的问题,其中X是待求的T_cam_to_end。 然后,需要选择求解方法,比如使用Tsai-Lenz算法、Park-Martin方法,或者通过最小二乘法求解。最后,验证标定结果的准确性,可能通过重投影误差或实际应用测试。 需要注意的是,每个步骤中的具体细节,例如标定板的选择(如棋盘格)、数据采集的数量(通常至少需要10-15个不同位姿),以及如何避免数据中的噪声或错误。同时,引用[2]提到的MATLAB工具可能提供现成的函数,比如helperEstimateHandEyeTransform,但用户可能需要调整参数以适应在手上的情况。 最后,用户可能需要知道如何应用标定结果,例如在机器人抓取任务中将相机坐标系下的物体位置转换到机械基座坐标系中。这涉及到将相机的观测数据乘以T_cam_to_end,再结合机械的运动学模型,实现精确定位。 总结步骤后,还需要生成相关问题,帮助用户进一步理解,比如标定数学原理、数据采集注意事项、标定误差处理等。</think>### 手眼标定在手上)实现步骤 手眼标定在手上”(Eye-in-Hand)的目标是确定相机坐标系($C$)与机械末端坐标系($E$)之间的固定变换矩阵$T_{C \to E}$,从而将相机感知的物体位置转换为机械基座坐标系($B$)下的坐标。以下是具体步骤: --- #### **1. 数据采集** - **标定板放置**:在工作空间中固定标定板(如棋盘格),确保其位置在机械运动范围内。 - **机械位姿调整**:控制机械末端携带相机移动到多个(通常10-15个)不同位姿,每个位姿需满足: - 标定板在相机视野内清晰可见; - 位姿差异足够大(平移和旋转均有变化)。 - **数据记录**:记录每个位姿下的: - 机械末端到基座的变换矩阵$T_{E \to B}^{(i)}$(通过机器人运动学模型获取); - 标定板到相机的变换矩阵$T_{T \to C}^{(i)}$(通过相机标定算法如OpenCV的`solvePnP`获取)。 --- #### **2. 数学模型建立** 对于每个位姿$i$,存在以下关系: $$ T_{E \to B}^{(i)} \cdot T_{C \to E} = T_{T \to B} \cdot (T_{T \to C}^{(i)})^{-1} $$ 其中$T_{T \to B}$是标定板到基座固定变换矩阵。通过多组数据联立方程,可消去$T_{T \to B}$,转化为形如$AX=XB$的方程,其中$X=T_{C \to E}$为待求变量[^1]。 --- #### **3. 求解变换矩阵** 常用算法包括: - **Tsai-Lenz算法**:分离旋转和平移分步求解; - **最小二乘法**:通过SVD分解优化误差; - **闭式解**:如Park-Martin方法。 例如,使用MATLAB的`handEye`函数或OpenCV的`calibrateHandEye`可直接求解[^2]。 --- #### **4. 验证与优化** - **重投影误差**:将标定结果反向投影到图像,检查像素误差; - **实际应用测试**:抓取已知位置的物体,验证定位精度。 --- #### **5. 应用场景** - **视觉引导抓取**:相机实时检测物体位置,结合$T_{C \to E}$转换为机械坐标系下的坐标; - **动态环境避障**:相机机械移动,实时更新环境信息。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值