yolov5-7.0 训练自己的数据集之分类数据集

本文介绍了如何利用yolov5这一强大的目标检测模型进行自定义数据集的训练。首先,需在yolov5-7.0的datasets文件夹中准备数据集,按照类名组织图像。接着,修改train.py文件指定数据集路径,然后在yolov5环境中执行训练。最后,运行程序开始训练过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

yolov5是一个非常强大的目标检测模型,随着深度学习的发展,yolov5在6.1和7.2版本里集成了目标识别、图像分类和分割模块,这篇博客的主题是利用yolov5训练自己的分类数据集

官方仓库地址:https://github.com/ultralytics/yolov5

假设,已经完成了环境配置

1)准备数据集

在yolov5-7.0文件同目录下创建datasets文件夹。

在这里插入图片描述
在datasets文件夹里存放着自己的数据集,例如,我得数据集文件夹 mydata 其格式如下
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
每个train文件夹下的每个文件夹名就是类名,每个类名文件夹下包含着每个类的图像

至此,数据集准备完毕

2)开始训练

打开yolov5-7.0/classify/train.py,在yolov5环境下,运行。
修改:
在这里插入图片描述
只需要修改红框内容即可,我的数据是mydata,直接写上mydata 即可。

3)运行演示

在这里插入图片描述
箭头处开始跑就可以了。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值