自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(16)
  • 收藏
  • 关注

原创 rasa高并发

你可以通过编写一个高并发的入口服务来实现请求的转发,将请求均匀地分发到四个Rasa实例(端口 6001-6004)。首先,你需要确保 Rasa 实例在端口 6001-6004 启动,Rasa 的配置文件中可以指定各自的端口来分别启动这些实例。可以使用 `FastAPI` 创建一个入口服务,通过轮询或负载均衡的方式将请求分发到不同的实例上。这样,所有请求都会先发送到入口服务(端口 8000),然后由服务均匀分发到 Rasa 实例上,利用轮询策略平衡负载。# 配置 Rasa 服务的端口列表。

2024-11-11 02:00:53 284

原创 gradio的开发

model="gpt-3.5-turbo", # 使用的模型版本。base_url='xxxx' # OpenAI API的基础URL。api_key='xxxxx', # 你的OpenAI API密钥。

2024-10-27 03:22:08 326

原创 openai gradio page

import os\nHuman: "top_p=1,""")

2024-10-24 23:02:54 353

原创 gradio 页面生成

user_id = gr.State(uuid.uuid4().hex) # 为每个会话生成唯一的用户ID。model="gpt-3.5-turbo", # 使用的模型,可以根据需要修改。user_input = gr.Textbox(label="输入你的消息:")clear_button = gr.Button("清除对话")gr.Markdown("# 多轮对话页面")# 将模型的回答添加到对话历史中。# 获取或初始化用户的对话历史。# 重置指定用户的对话历史。# 更新用户的对话历史。

2024-10-24 22:24:14 450

原创 提交代码啊

完成后,你可以在GitHub上创建一个Pull Request,将 `feature/HSSW-5730` 分支合并到主分支或者 `dev` 分支。git commit -m "新增和修改文件,完成HSSW-5730的功能开发"

2024-10-24 00:12:52 245

原创 评估性能的测试

我们将使用`scikit-learn`的相关指标来计算准确率和F1值,并添加推理时间来衡量模型的推理速度。self.assertLessEqual(avg_inference_time, 1.0, "推理时间太长") # 假设每次推理时间小于1秒。- `total_inference_time`: 记录所有推理时间的总和,用于计算平均推理时间。print(f"响应成功率: {success_rate * 100}%")- **F1值(F1-Score)**:通过`f1_score`函数计算加权的F1值。

2024-10-23 22:41:11 457

原创 评估性能的测试

要为模型增加评估性能的测试,包括准确率(Accuracy)、F1值、响应成功率和推理速度等常见性能指标,我们可以通过以下方式在测试中进行评估。我们将使用的相关指标来计算准确率和F1值,并添加推理时间来衡量模型的推理速度。同时我们也可以统计响应成功率(HTTP请求状态码为200的比例)。

2024-10-23 20:58:41 379

原创 test_integration

如果你已经有一个测试集包含标签,并且有一个测试函数用于获取预测结果,那么我们可以将集成测试中的Flask请求替换为你的geth函数。同时,基于你提供的测试集的标签,我们可以进行更全面的集成测试,验证模型预测的准确性。假设你有一个测试集test_data包含输入和相应的标签,我们可以这样修改集成测试的代码。

2024-10-23 20:51:04 204

原创 pip 的高级操作和选项

确实,还有一些pip的高级操作和选项可能遗漏了。为了尽可能全面地涵盖pip。

2024-10-11 00:35:45 4035

原创 pip download 是一个很有用的命令

确实,是一个很有用的命令,通常用于下载包到本地以供离线安装或在网络不稳定时使用。以下是关于。

2024-10-11 00:35:14 1079

原创 pip 的常见操作

以下是pip。

2024-10-11 00:34:11 630

原创 conda 和 venv 的常见操作和命令汇总

conda提供了强大的环境管理和包管理功能,适用于多个语言环境,特别是科学计算和数据科学领域。venv是 Python 自带的虚拟环境管理工具,轻量级、简单,适合只需要 Python 环境的项目。通过这些命令,你可以轻松管理 Python 虚拟环境和依赖。

2024-10-11 00:32:45 401

原创 conda 和 venv 的常见操作和命令汇总

conda提供了强大的环境管理和包管理功能,适用于多个语言环境,特别是科学计算和数据科学领域。venv是 Python 自带的虚拟环境管理工具,轻量级、简单,适合只需要 Python 环境的项目。通过这些命令,你可以轻松管理 Python 虚拟环境和依赖。

2024-10-11 00:20:35 438

原创 SpacyEntityExtractor 的详细讲解

使用简单、速度快,非常适合那些需要快速进行常见实体识别任务的场景。它的主要优点是无需定制化,使用 spaCy 的预训练模型就能实现对多种实体的识别。不过,如果你需要识别一些特定领域的自定义实体,可能需要借助其他更加灵活的模型组件,如 DIETClassifier。

2024-10-10 23:18:40 1934

原创 DIETClassifier实现

使用BERT作为编码器# 定义一个全连接层用于意图分类# 定义一个全连接层用于实体识别的输出# CRF层用于实体标注# 通过BERT提取特征# 意图分类器# 实体识别的线性输出层# 如果有标签数据(即训练阶段),使用CRF计算损失else:# 推理阶段,直接用CRF层得到实体的预测标签我们使用PyTorch和库手动实现了类似于 Rasa 中的 DIETClassifier 的多任务模型。BERT被用作编码器,用于提取文本特征。Transformer 层捕获了上下文关系,而。

2024-10-10 23:15:45 1266

原创 Git的常用操作总结

以上操作涵盖了Git的常用命令和基本功能,包括仓库管理、分支操作、提交和推送、版本回退等。根据需要,您可以查找特定的命令并灵活使用。如果您还有其他问题或需要更详细的解释,请随时告诉我!

2024-09-28 18:48:00 451 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除