Cachel wood
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
启发式算法:遗传算法
染色体是由基因组成的,所以把组成遗传算法染色体(个体)的基本部分称为基因,基因的选择可以多种多样,比如在扇贝例子中,我们用像素作为基因,但实际上扇贝例子的原文是用不同的三角形块作为基因,通过不同三角形块的叠加形成。:在目前的种群中(通常是上一代的种群和新生产的种群的结合)选择一定数量的较优个体,形成新的种群。选择是通过适应度函数f(x)做出的,其中x为个体。:在种群中随机选择m个样本,在这m个样本中,选择适应度函数最好的个体作为下一代的个体,之后将样本回放,重复采用和选择直到选出一定数目的个体。原创 2024-03-10 14:21:38 · 159 阅读 · 0 评论 -
启发式算法:蚁群算法
基本蚁群算法是针对旅行商问题提出的。代表信息素的挥发率,表示新增加的信息素。原创 2024-03-10 00:27:25 · 157 阅读 · 0 评论 -
启发式算法:禁忌搜索 Tabu Search
一般是给被禁对象x一个数(禁忌长度)t,要求对象x在t步迭代内被禁,在禁忌表中采用tabu(x) = t记忆,每迭代一步,该项指标做运算tabu(x) = t-1,直到tabu(x)=0时解禁。禁忌对象:由于需要避免一些操作的重复进行,就要将一些元素放到禁忌表中以禁止对这些元素进行操作,这些元素就是我们指的禁忌对象(通常指找到的局部最优解)。为了避免陷入局部最优解,TS搜索中采用了一种灵活的“记忆”技术,对已经进行的优化过程进行记录和选择,指导下一步的搜索方向,这就是Tabu表的建立。原创 2024-03-10 00:22:15 · 253 阅读 · 0 评论 -
启发式算法:模拟退火算法
若目标函数f在第i+1步移动后比第i步更优,即fYi1≤fYifYi1))≤fYi)),则总是接受该移动。若fYi1fYifYi1))fYi)),即移动后的解比当前解要差,则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低,逐渐降低才能趋向稳定。原创 2024-03-09 23:51:26 · 218 阅读 · 0 评论 -
传染病模型SIR model平衡点、稳定性和基本再生数R0
使用正平衡状态下,感染者为0时的平衡点来计算基本再生数R0。原创 2024-01-04 23:58:47 · 2175 阅读 · 0 评论 -
护士排班问题:Nurse Rostering Problem(NRP)实战并可视化页面
护士排班问题并不专指对于医院护士的排班,实际上泛指这种限制条件较多的排班问题。第二种求解方法是演化博弈算法,比较经典的有遗传算法,模拟退火算法,粒子群算法等一系列启发式算法,可以在较短的时间内找到一个可以接受的解。目前对于排班问题有两种比较典型的求解思路,一种就是传统的线性规划LP问题加大型求解器的求解思路,目前。等优秀的开源模块,这种方法求得的是精确解,但是非常耗费计算资源,在问题规模相当大时很难获得最优解。P问题是在多项式时间内可以被解决的问题,而NP问题是在多项式时间内可以被验证其正确性的问题。原创 2023-11-25 10:50:39 · 1072 阅读 · 0 评论 -
python+gurobi求解线性规划、整数规划、0-1规划
线性规划是数学规划中的一类最简单规划问题,常见的线性规划是一个有约束的,变量范围为有理数的线性规划。最终可得最优解为x = 20, y = 24, 最优值为428。当然0-1规划的典型应用场景是指派问题、运输问题、排班问题等。对最大化问题、最小化问题,大于等于和小于等于约束都支持。规划实际上只需要在整数规划的基础上,让决策变量的定义域在。问题需要化为最小化问题,所有约束条件必须为。松弛问题的最优解总是优于整数规划问题的。可得该整数规划问题的最优解为。可得0-1规划的最优解是。原创 2023-11-24 13:20:29 · 1080 阅读 · 0 评论 -
运筹学:影子价格(shadow price)和对偶价格(dual price)
综上,将对偶价格dual price定义为:当约束条件中的常数项增加一个单位时,最优目标函数值变化的数量。将影子价格定义为:当约束条件中的常数项增加一个单位时,最优目标函数值增加的数量。变化的数量可以理解为不带符号的,只有大小。增加的数量可以理解为带符号的,有方向。此时的对偶价格和对偶问题的解是相等的。而影子价格可能是对偶问题的解的负数。原创 2023-10-20 16:31:04 · 9710 阅读 · 8 评论