LeetCode HOT 100题目解析——动态规划:最大子序和(Java详细讲解)

LeetCode HOT 100题目解析——动态规划:最大子序和(Java详细讲解)

一、题目介绍

本次解析的是力扣HOT 100中的经典题目:53. 最大子序和

题目描述:

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

二、解题思路讲解

本题考察的是动态规划(Dynamic Programming),主要思路是:

  1. 定义状态
    • dp[i] 表示以 i 结尾的最大连续子数组和。
  2. 状态转移方程
    • dp[i] = max(nums[i], dp[i-1] + nums[i])
    • 意思是:要么当前数字自己成为新的子数组,要么和前面的子数组连起来。
  3. 初始值
    • dp[0] = nums[0]
  4. 答案
    • 遍历整个数组,找出最大的 dp[i] 即可。

优化:实际上我们只需要前一个状态,可以不用数组,直接用一个变量记录即可。


三、Java代码实现(含详细注释)

public class Solution {
    public int maxSubArray(int[] nums) {
        int maxSum = nums[0]; // 最大子序和,初始为第一个元素
        int currentSum = nums[0]; // 以当前位置结尾的最大和
        for (int i = 1; i < nums.length; i++) {
            // 如果前面的和加当前值还不如当前值本身大,就抛弃前面的,重新开始
            currentSum = Math.max(nums[i], currentSum + nums[i]);
            // 更新最大子序和
            maxSum = Math.max(maxSum, currentSum);
        }
        return maxSum;
    }
}

代码说明:

  • currentSum 表示以当前位置结尾的最大连续和。
  • 如果 currentSum + nums[i] 还不如 nums[i],那么直接重新开始。
  • 每次都更新 maxSum,保存目前全局最大值。
  • 时间复杂度O(n),空间复杂度O(1)。

四、小结

本题是动态规划的入门题目,适合所有算法初学者掌握。学会本题后可以解决许多类似的区间和最大值问题。


希望本讲解能帮助你理解“动态规划”技术,欢迎继续关注LeetCode HOT 100题目解析!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值