双编码网络在皮肤病灶分割领域中的应用

本文探讨了皮肤病变早期诊断的挑战,重点介绍了双编码网络,结合CNN和Transformer的优势,用于改善医学图像分割。文章分析了双编码网络的优缺点,面临的挑战包括模型复杂性、标注成本和鲁棒性,并提出了未来的发展方向,如增强泛化能力和融合多模态信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、研究背景与意义

研究背景:

研究意义:

二、双编码网络详述

CNN和Transformer的优缺点

双编码网络优势

双编码网络详述

三、挑战及展望

挑战

展望


一、研究背景与意义

研究背景:

  1. 皮肤作为最大的人体器官,与外界环境密切接触,易受紫外线辐射、冷热骤变和各种病原性生物感染,会引起皮肤病变;
  2. 恶性皮肤病变的早期诊断与治疗十分重要,但早期病变区域隐蔽性强,与正常肤色相似,藏匿于毛发之间,导致早期诊断十分困难;
  3. 皮肤镜图像中存在毛发遮挡、边界模糊、颜色差异性大、病变区域与正常皮肤对比度低等影响。经验丰富的皮肤科医生进行人工分割费时费力,且受主观因素影响,易导致误判及效率低下。

研究意义:

  1. 解放医疗资源,提高医学诊断的准确性和效率,降低医生工作强度;
  2. 皮肤病灶图像分割结果可作为医学诊断相关疾病的重要依据,提升医师对疾病的诊断及良恶性的判断精准度;
  3. 追踪病情变化。定期对皮肤病灶区域进行分割可帮助医生跟踪病情变化,对比不同时间的分割结果,可更好的评估治疗效果和病情进展。

二、双编码网络详述

CNN和Transformer的优缺点

CNN优点:

    <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值