
可视化
文章平均质量分 67
寻小宁
小小疾控人一枚~
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于GBD数据绘图之——热力图
日常工作中,热力图可以直观地表现数据的分布情况,通过颜色的深浅和亮度的变化,可以让人更好地理解数据密集程度和趋势。尤其是在公共卫生领域,对于大样本量流行病学数据进行更好且直观的可视化展示。原创 2023-11-06 17:37:31 · 1072 阅读 · 1 评论 -
基于GBD数据绘图之——双Y轴图
GBD数据库由美国华盛顿大学健康测量和评价研究中心 ( Institute for Health Metrics and Evaluation ,IHME )的全球疾病负担( GBD )项目研究组牵头建立,提供了自 1990 年以来全球 204 个国家和地区的 369种疾病、伤害和健康危险因素的流行病学数据 ,并定期对数据库进行更新发布。近期对疾病负担研究颇感兴趣,在日常监测数据中也会经常用到,查阅了一系列paper,发现一张精美的图片,能将分析数据完美、直观的展示。本期文章就GBD数据进行双Y轴图的绘制。原创 2023-10-24 17:15:31 · 1603 阅读 · 0 评论 -
【R语言 个性化词云图绘制(MamBa never out)】
MamBa never out原创 2022-05-31 21:28:00 · 281 阅读 · 0 评论 -
【R语言 南丁格尔玫瑰图绘制】
继续上一篇地理信息可视化讲起,为了能够更加直观的展示数据分布情况,发现之前人民日报客户端曾经做过一张关于疫情分布的玫瑰图,非常惊艳,故尝试用当前爬取的数据进行绘制。绘图前数据整理现存数据中不少地区病例已经清零,故在绘图中剔除为0的地区,由于弯弯的数据太过于扎眼,和大陆地区差异巨大,直接用原始数据绘图可视化较差,故对原始数据进行了相应调整。library(ggplot2)library(RColorBrewer)library(dplyr)###绘图数据处理###mydata[,c(1,3)]%原创 2022-05-28 13:58:37 · 2196 阅读 · 1 评论 -
【R语言】地图信息数据可视化
最近需要对国内疫情分布情况绘制可视化地图,查找资料R中地图绘制思路,显示在R中绘制地图主要有三种方式:第一种是利用某些特定R包中自带的地图数据进行绘图;第二种从其他途径获取地理信息数据,调用相应的软件包对数据进行读取,进而绘图;第三种是基于某些供应商的tiles与Google、NASA、高德等网络在线地图相关联,调用其地图数据为自己绘图所用。下面进行举例说明:1.【绘图前准备】爬取丁香园每日疫情数据##加载程序包,设置路径##setwd("f://data")library(rvest)libra原创 2022-05-27 14:48:35 · 5244 阅读 · 0 评论