超定线性方程组最小二乘解推导

超定线性方程组是指方程个数大于未知数的方程组,当矩阵列满秩时无精确解。最小二乘法常用于求解这类问题,寻找使得误差平方和最小的解。通过推导得出法方程组(ATA)x=ATb,其解即为超定线性方程组的最小二乘解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

超定线性方程组

定义

  超定方程组是指方程个数大于未知量个数的方程组。对于方程组 R a = y Ra = y Ra=y R R R m × n m \times n m×n的矩阵,如果 R R R列满秩,且 m > n m>n m>n,则方程组没有精确解,此时称方程组为超定方程组。即任意 x 1 , x 2 , … , x n x_1, x_2, \dots, x_n x1,x2,,xn都不可能使 ∑ i = 1 m ( a i 1 x 1 + a i 2 x 2 + ⋯ + a i n x n − b i ) 2 = 0 \sum_{i=1}^m(a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n - b_i)^2 = 0 i=1m(ai1x1+ai2x2++ainxnbi)2=0

超定线性方程组的解

  超定方程一般是不存在解的矛盾方程。

  例如,如果给定的三点不在一条直线上, 我们将无法得到这样一条直线,使得这条直线同时经过给定这三个点。 也就是说给定的条件(限制)过于严格, 导致解不存在。在实验数据处理和曲线拟合问题中,求解超定方程组非常普遍。比较常用的方法是最小二乘法,形象的说,就是在无法完全满足给定的这些条件的情况下,求一个最接近的解。

  曲线拟合是最小二乘法要解决的问题,实际上就是求以上超定方程组的最小二乘解的问题。

  如果有向量 ( x 1 0 , x 2 0 , … , x n 0 ) T (x^0_1, x_2^0, \dots, x_n^0)^T (x10,x20,,xn0)T使得 ∑ i = 1 m ( a i 1 x 1 + a i 2 x 2 + ⋯ + a i n x n − b i ) 2 \sum^m_{i=1} \left( a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n - b_i \right)^2 i=1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值