​ torch.chunk(tensor, chunks, dim)​

torch.chunk函数用于将张量在指定维度上分割成多个块,chunks参数定义了块的数量。例如,将一个3x3的张量按列分成3块,会得到3个1x3的张量;按行分成2块,会得到2个3x2的张量。当块数为偶数且张量维度为奇数时,最后一块可能会包含多一列的数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 torch.chunk(tensor, chunks, dim)

含义:在给定维度上对所给张量进行分块。

参数解释

  • Tensor         -- 要进行分快的张量
  • chunks        -- 分块个数
  • dim              -- 维度,按照此维度进行分块

如下代码:

import torch
x = torch.randn(3, 3)
x
tensor([[ 0.5149,  1.0009, -0.7242],
        [-0.9385, -0.1157, -1.6772],
        [ 1.0187, -2.3512,  1.0539]])


torch.chunk(x, 3, dim = 0)
(tensor([[ 0.5149,  1.0009, -0.7242]]),
 tensor([[-0.9385, -0.1157, -1.6772]]),
 tensor([[ 1.0187, -2.3512,  1.0539]]))


torch.chunk(x, 3, dim = 1)
(tensor([[ 0.5149],
         [-0.9385],
         [ 1.0187]]),
 tensor([[ 1.0009],
         [-0.1157],
         [-2.3512]]),
 tensor([[-0.7242],
         [-1.6772],
         [ 1.0539]]))


torch.chunk(x, 2, dim = 1)       # 注意当chunks为偶数时,而原始张量为所分维数为奇数时的变化
(tensor([[ 0.5149,  1.0009],
         [-0.9385, -0.1157],
         [ 1.0187, -2.3512]]),
 tensor([[-0.7242],
         [-1.6772],
         [ 1.0539]]))


# 另外也可以这么使用
x.chunk(2, dim = 1)
(tensor([[ 0.5149,  1.0009],
         [-0.9385, -0.1157],
         [ 1.0187, -2.3512]]),
 tensor([[-0.7242],
         [-1.6772],
         [ 1.0539]]))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值