- 博客(3)
- 收藏
- 关注
原创 基于U-Net的裂缝检测实现
本文介绍了一个基于改进型U-Net网络的裂缝检测项目,该项目通过添加注意力机制,能够有效识别和分割道路、建筑物等结构中的裂缝。项目使用CRACK500数据集进行训练,适合深度学习与计算机视觉领域的入门学习者。文章详细描述了项目的环境配置、部署流程、模型训练与推理步骤,并提供了核心代码展示。项目代码已开源,用户可通过GitHub获取并进行自定义训练或推理。
2025-05-14 14:34:37
1890
1
原创 unet 结构详解
U形结构设计:网络的整体结构呈U形,左侧为编码器(下采样路径),右侧为解码器(上采样路径),这种对称设计使得特征提取和重建过程更加高效。跳跃连接保留原始图像的空间位置信息缓解深度网络中的梯度消失问题改善边缘检测和细节恢复能力少量数据训练:U-Net最初设计用于医学图像分割,其特点是能够在有限的标注数据上取得良好效果,通过数据增强和有效的网络结构,可以减少对大规模标注数据的依赖。高精度分割:U-Net在医学图像和生物医学图像分割任务中展现出极高的精度,尤其适合需要精细边界的分割任务。灵活适应性。
2025-04-24 12:44:10
2473
原创 U-Net经典项目图像分割实现
本项目实践了U-Net模型在图像分割任务上的应用,从环境配置、数据准备到模型训练和预测的完整流程。U-Net作为一种经典的图像分割网络,在医疗影像、卫星图像等众多领域都有广泛应用。U-Net的基本结构和工作原理如何配置环境并准备训练数据如何训练模型和调整参数如何使用训练好的模型进行预测这个项目是入门图像分割的好选择,代码结构清晰,容易理解,而且效果不错。尤其适合对计算机视觉和深度学习感兴趣的初学者。
2025-04-22 11:11:52
1714
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人