📖标题:AgentSwift: Efficient LLM Agent Design via Value-guided Hierarchical Search
🌐来源:arXiv, 2506.06017
🌟摘要
🔸大型语言模型 (LLM) 代理已经证明了跨不同领域的强大能力。然而,设计高性能代理系统仍然具有挑战性。现有的代理搜索方法存在三个主要限制:(1)强调优化代理工作流,同时充分利用经过验证的人工设计的组件,例如内存、规划和工具使用; (2) 高评估成本,因为每个新生成的代理都必须在基准上完全评估; (3) 在大型搜索空间中搜索效率低下。
🔸在这项工作中,我们引入了一个全面的框架来应对这些挑战。首先,我们提出了一个分层搜索空间,联合建模代理工作流和可组合的功能组件,从而实现更丰富的代理系统设计。在此结构化设计空间的基础上,我们引入了一个预测值模型,该模型在给定代理系统和任务描述的情况下估计代理性能,从而允许在搜索过程中进行有效的、低成本的评估。最后,我们提出了一种由不确定性通知的分层蒙特卡罗树搜索 (MCTS) 策略来指导搜索。
🔸在涵盖具身、数学、网络、工具和游戏的七个基准上的实验表明,与最先进的基线相比,我们的方法获得了 8.34% 的平均性能增益,并且在改进轨迹更陡峭的情况下表现出更快的搜索进度。代码 repo 可在 https://github.com/Ericccc02/AgentSwift 获得。
🛎️文章简介
🔸研究问题:如何高效地设计和优化大语言模型(LLM)代理系统,以实现更好的性能和更低的评估成本?
🔸主要贡献:论文提出了一种结合层次搜索空间、价值模型和不确定性引导的层次蒙特卡罗树搜索(MCTS)策略的框架,从而高效地发现高性能LLM代理设计。
📝重点思路
🔸构建了一种层次搜索空间,联合优化代理工作流程和功能组件,包括记忆、工具使用和规划,以提高设计的灵活性和效用。
🔸引入了一个价值模型,能够基于代理系统的设计和任务描述,预测代理性能,从而减少依赖高成本的实际评估。
🔸实施了一种基于MCTS的不确定性引导层次扩展策略,通过重组、变异和细化步骤,不断改进代理设计,同时集成预测模型的输出以优先探索有潜力的区域。
🔎分析总结
🔸通过实验,论文展示了该框架在多个基准数据集上的有效性,并实现了比现有最先进方法平均高出8.34%的性能提升。
🔸发现的代理设计在不同LLM骨干网络之间具有很强的模型无关性,表明其广泛适用性。
🔸所提出的价值模型展现出高预测准确性,且在无需大量微调的情况下能够很好地迁移到未见任务上。
💡个人观点
论文的核心在于通过引入价值导向的搜索策略和不确定性管理,极大地提升了设计空间的探索效率,使得代理系统的自动化设计不再依赖昂贵的评估过程。