上海交大:多agent辩论定位软件缺陷

在这里插入图片描述

📖标题:SWE-Debate: Competitive Multi-Agent Debate for Software Issue Resolution
🌐来源:arXiv, 2507.23348

🌟摘要

由于大型语言模型 (LLM) 的高级推理能力,问题解析取得了重大进展。最近,基于代理的框架,例如 SWE-agent,通过启用自主、工具使用代理来解决复杂的软件工程任务,进一步提高了这一进展。虽然现有的基于代理的问题解析方法主要基于代理的独立探索,但它们通常陷入局部解决方案,并且无法识别跨越代码库不同部分的问题模式。为了解决这个限制,我们提出了 SWE-Debate,这是一个具有竞争力的多智能体辩论框架,鼓励不同的推理路径并实现更统一的问题定位。SWE-Debate首先通过遍历代码依赖图创建多个故障传播轨迹作为定位建议。然后,它在专业代理之间组织了一个三轮辩论,每个辩论都体现了沿故障传播跟踪的不同推理视角。这种结构化竞争使代理能够在合并的固定计划上协作收敛。最后,将这个合并的固定计划集成到一个基于 MCTS 的代码修改代理中,用于补丁生成。在 SWE-bench 基准上的实验表明,SWE-Debate 在开源代理框架中实现了新的最先进的结果,并大大优于基线

🛎️文章简介

🔸研究问题:如何提高软件缺陷定位和问题解决的准确性和效率?
🔸主要贡献:论文提出了一种竞争性的多智能体辩论框架SWE-Debate,通过多样化的推理路径和结构化的辩论机制提高软件缺陷的定位和问题解决能力。

📝重点思路

🔸使用静态依赖图构建多个候选故障传播路径,以捕捉代码依赖和结构关系。
🔸在构建的图中,通过语言模型的语义匹配,识别与问题描述最相关的高置信度入口点,并从中生成候选定位链。
🔸采用三轮结构化辩论过程,使多个智能体在选择候选传播路径后独立提议修复计划,并进行竞争性评估和改进。
🔸最后,利用蒙特卡洛树搜索(MCTS)框架生成修复补丁。

🔎分析总结

🔸SWE-Debate在问题解决率上提高了6.7%,在故障定位准确性上提高了5.1%,显示出其优越的性能。
🔸多链生成机制对整体性能的贡献最大,证明了故障传播路径的多样性能够提升定位和解决问题的准确性。
🔸与其他基线方法相比,SWE-Debate在开放源码代理框架下实现了新的最优结果,并大幅度优于已有的方法。
🔸结构化辩论有效克服了单一智能体分析中的局限性,使得不同的修复策略能够得到系统性的比较和评估。

💡个人观点

论文的创新点在于引入了竞争性的多智能体辩论机制,有效提升了软件缺陷定位的准确性,克服了传统方法在复杂代码环境中所面临的观察范围限制。

🧩附录

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值