编辑:计算机视觉工坊
添加小助理:dddvision,备注:自动驾驶,拉你入群。文末附行业细分群
扫描下方二维码,加入3D视觉知识星球,星球内凝聚了众多3D视觉实战问题,以及各个模块的学习资料:近20门视频课程(星球成员免费学习)、最新顶会论文、计算机视觉书籍、优质3D视觉算法源码等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!
0. 这篇文章干了啥?
VINS主要包括两种方法:优化和滤波。基于优化的方法在定位的高精度方面很显著,但可能会受到高计算复杂性的影响。相反,基于滤波的方法实现了高效率,但牺牲了精度。因此,迫切需要开发一个结合了高精度和高效率的框架。受到基于优化的方法中的舒尔补的启发,作者充分利用了用于姿态和地标构建的高维残差模型中固有的稀疏结构,以实现EKF的高效性。因此,这篇文章提出了一种既实现了高效率又实现了高精度的基于EKF的VINS框架。
下面一起来阅读一下这项工作~