车载传感器(Lidar/Radar/Camear/lMU)如何高效标定助力量产

传感器标定是自动驾驶感知和规划任务的基础,其精度直接影响感知性能。从下线标定到在线标定,再到售后标定,不同阶段有不同挑战。本课程深入探讨标定方法,包括无标靶标定,帮助解决实际问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自动驾驶为什么要传感器标定

传感器标定是自动驾驶感知&规划任务的基础。第一,各个传感器各自感知的结果需要统一到车体系融合表达,比如Mono3D感知的前方车辆和激光感知的前方车辆,都需要转换到车体系,才可以融合并输出给下游。第二,某些感知任务依赖传感器外参标定,比如视觉IPM变换,需要知道相机外参。第三,前融合任务,例如相机和激光前融合,也需要知道相机&激光的外参。所以传感器标定是一切感知任务的基础。

图片

为什么传感器标定很重要

传感器标定的精度决定了感知性能。比如方向角偏了0.5度,100m测距横向就会偏差100*tan(0.5度) = 0.87m,接近1m,可能贴着车道行使的车辆会被误判为侵入车道,引起避让甚至急刹动作。再比如激光和相机方向角偏差0.2度,侧方45度的激光点p(100, 100, 0) 在内参为M【2000, 0, 960, 0, 2000, 540, 0, 0, 1】的相机下,投影像素误差可以计算:deltaP = M*R*p - M*p,约有5个像素的误差,那么很多前融合的事情就做不了。

应用场景决定了传感器标定形式。首先肯定是车辆生产交付的场景,在厂房的标定,即精确又快速。但是做过自动驾驶的都知道,在前期研发阶段,并没有很理想的平台支持,很多事情都是一边干一边改,一年前采集的数据,车子早都拆了,现在要重新标定,手里只有一堆数据,那么只能利用数据标定,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值