从双目标定到立体匹配:pyton实践指南

本文介绍了如何使用Python进行立体匹配,涵盖了双目标定、立体校正和视差计算等步骤。通过OpenCV库实现相机标定,接着进行图像去畸变、极线校正和视差图计算,最终应用WLS滤波优化结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

立体匹配是计算机视觉中的一个重要领域,旨在将从不同角度拍摄的图像匹配起来,以创建类似人类视觉的3D效果。实现立体匹配的过程需要涉及许多步骤,包括双目标定、立体校正、视差计算等。在这篇文章中,将介绍如何使用Python实现立体匹配的基本步骤和技巧。

图片

下面的代码实现了从相机标定到立体匹配的完整流程,下面将分别介绍各个函数的参数和输出。

标定

首先,该程序需要用到以下库:

numpy
cv2 (OpenCV)
os

在程序开头,需要定义一些变量来存储标定图片的路径、棋盘格参数、角点坐标等等。具体介绍如下:

path_left = "./data/left/"
path_right = "./data/right/"

path_left和path_right是左右相机标定图片文件夹的路径。

CHESSBOARD_SIZE = (8, 11)
CHESSBOARD_SQUARE_SIZE = 15  # mm

CHESSBOARD_SIZE是棋盘格内部角点的行列数,CHESSBOARD_

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值