序列数据建模-RNN & Attention & self-Attention

本文介绍了循环神经网络(RNN)及其改进版LSTM和GRU,探讨了它们在处理序列数据时的长期依赖问题。然后,文章转向注意力机制,解释了如何与RNN结合使用以突出输入序列中不同部分的重要性。自注意力机制被提出,它允许并行处理和全局信息提取,常见于Transformer结构中。自注意力层的计算涉及到多个w∗x运算,并通过softmax进行归一化处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

—>了解更多

全连接神经网络具有层间相互连接,层内相互独立,输入和输出维数固定的特点,在针对不等尺寸图像、不定长度语句、不同词义字符等无约束序列长度,有约束序列依赖的输入数据建模时总会表现出一定的局限性。

在这里插入图片描述

1 循环神经网络

循环神经网络(RNN)的主要特点表现为t时刻的隐层(输出层)由第t-1时刻的隐层(输出层)与第t时刻的输入共同决定,其能够有效解决模型非定长输入与时序依赖问题。然而,当循环神经网络的结构过长时,较前输入对模型的影响会随着模型输入的更新不断降低,过长的梯度传播过程也容易引发梯度消失现象。虽然可以采用Relu函数或其它模型代替非线性激活函数,但更一般的做法是对其网络架构做出改进。

在这里插入图片描述

为了解决网络的长期依赖问题,提出了长短时记忆神经网络(LSTM)。该模型引入了一组记忆单元,允许网络学习何时遗忘历史信息,何时用新信息更新记忆单元,引入了元素取值为[0,1]的输入门、遗忘门和输出门,通过门机制控制信息流。门可选性地允许信息流动,由一个Sigmoid神经网络层与一个点乘运算组成,Sigmoid神经网络层输出0和1之间的数字,决定了流通信息量。其中,时刻t的遗忘门定义了将要丢弃记忆单元中的信息流内容;输入门利用Sigmoid层定义需要更新的值,tanh层创建累加到存储的候选向量,两者点积控制了记忆单元中将要存储的信息流内容;t时刻的记忆单元由t时刻的遗忘门与t-1时刻的记忆单元点乘所定义的遗忘信息,以及t时刻的输入门所定义的存储信息

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值