—>了解更多
全连接神经网络具有层间相互连接,层内相互独立,输入和输出维数固定的特点,在针对不等尺寸图像、不定长度语句、不同词义字符等无约束序列长度,有约束序列依赖的输入数据建模时总会表现出一定的局限性。
1 循环神经网络
循环神经网络(RNN)的主要特点表现为t时刻的隐层(输出层)由第t-1时刻的隐层(输出层)与第t时刻的输入共同决定,其能够有效解决模型非定长输入与时序依赖问题。然而,当循环神经网络的结构过长时,较前输入对模型的影响会随着模型输入的更新不断降低,过长的梯度传播过程也容易引发梯度消失现象。虽然可以采用Relu函数或其它模型代替非线性激活函数,但更一般的做法是对其网络架构做出改进。
为了解决网络的长期依赖问题,提出了长短时记忆神经网络(LSTM)。该模型引入了一组记忆单元,允许网络学习何时遗忘历史信息,何时用新信息更新记忆单元,引入了元素取值为[0,1]的输入门、遗忘门和输出门,通过门机制控制信息流。门可选性地允许信息流动,由一个Sigmoid神经网络层与一个点乘运算组成,Sigmoid神经网络层输出0和1之间的数字,决定了流通信息量。其中,时刻t的遗忘门定义了将要丢弃记忆单元中的信息流内容;输入门利用Sigmoid层定义需要更新的值,tanh层创建累加到存储的候选向量,两者点积控制了记忆单元中将要存储的信息流内容;t时刻的记忆单元由t时刻的遗忘门与t-1时刻的记忆单元点乘所定义的遗忘信息,以及t时刻的输入门所定义的存储信息