数学建模常用模型(二):插值与拟合
在数学建模中,插值和拟合是常用的数据分析技术,用于从给定的离散数据中推断出连续函数或曲线的近似形式。
插值是通过已知数据点之间的插值多项式来估计未知数据点的值。插值方法的目标是在给定数据点上准确地重现原始数据,以便在数据点之间进行插值时获得尽可能准确的结果。常用的插值方法包括线性插值、多项式插值(如拉格朗日插值和牛顿插值)、样条插值等。
拟合是通过选择一个数学模型来逼近离散数据的趋势。拟合方法的目标是找到一个函数或曲线,使其在给定数据点附近拟合得最好。常用的拟合方法包括最小二乘法拟合、多项式拟合、指数拟合、对数拟合等。
这是我自己总结的一些代码和资料(本文中的代码以及参考书籍等),放在github上供大家参考:https://github.com/HuaandQi/Mathematical-modeling.git
1.插值与拟合的实现
以下是一个简单的示例,展示如何在Python中使用Scipy库进行插值和拟合:
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import interp1d
from scipy.optimize import curve_fit
# 示例数据
x = np.array([1, 2, 3, 4, 5])
y