squeeze()的作用

squeeze() 是 Python 的 PyTorch 和 NumPy 等库中常用的一个张量(tensor)操作函数。它的主要作用是去除 tensor 中所有“维度为1”的轴(dimension)

具体作用

假设有一个张量 x,形状为 (2, 1, 3, 1),调用 x.squeeze() 后,张量的形状会变成 (2, 3)。也就是说,所有维度为1的轴都被去掉了

你也可以指定要去掉哪一维(用 squeeze(dim)),比如 x.squeeze(1) 只会去掉第1个轴(从0开始计数),如果该轴的长度正好为1。

示例

import torch

x = torch.randn(2, 1, 3, 1)
print(x.shape)           # 输出: torch.Size([2, 1, 3, 1])

y = x.squeeze()
print(y.shape)           # 输出: torch.Size([2, 3])

z = x.squeeze(1)
print(z.shape)           # 输出: torch.Size([2, 3, 1])

作用总结

  • 减少不必要的维度,让张量结构更简洁,方便后续计算。
  • 常用于模型输出、损失计算等环节,使数据结构匹配。

如果有更多维度处理的问题,欢迎随时提问!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值