squeeze()
是 Python 的 PyTorch 和 NumPy 等库中常用的一个张量(tensor)操作函数。它的主要作用是去除 tensor 中所有“维度为1”的轴(dimension)。
具体作用
假设有一个张量 x
,形状为 (2, 1, 3, 1)
,调用 x.squeeze()
后,张量的形状会变成 (2, 3)
。也就是说,所有维度为1的轴都被去掉了。
你也可以指定要去掉哪一维(用 squeeze(dim)
),比如 x.squeeze(1)
只会去掉第1个轴(从0开始计数),如果该轴的长度正好为1。
示例
import torch
x = torch.randn(2, 1, 3, 1)
print(x.shape) # 输出: torch.Size([2, 1, 3, 1])
y = x.squeeze()
print(y.shape) # 输出: torch.Size([2, 3])
z = x.squeeze(1)
print(z.shape) # 输出: torch.Size([2, 3, 1])
作用总结
- 减少不必要的维度,让张量结构更简洁,方便后续计算。
- 常用于模型输出、损失计算等环节,使数据结构匹配。
如果有更多维度处理的问题,欢迎随时提问!