minimax-01是MiniMax在1月份开源的旗舰大模型
github地址: https://github.com/MiniMax-AI/MiniMax-01
参数量没有DeepSeek R1大(DeepSeek是671b,minimax-01是456b),但是实测各方面能力相差不大(性能同样直追GPT-4o和Claude-3.5-Sonnet)
最惊艳的亮点有两项:
1.价格感人: 原本DeepSeek的API就已经是白菜价了,但是minimax-01的API价格居然比DeepSeek还低(100万tokens仅需1元)。
2.最关键的能力:支持处理400万(4M)tokens的超长上下文(目前全球最长),是Claude-3.5-Sonnet的20倍,GPT-4o的32倍,DeepSeek的62.5倍!这项能力上对其他模型来说是降维打击了。
在400万token的"大海捞针"检索任务中,MiniMax-01全绿!这意味着即使在海量信息中,它也能精准找到关键内容,不会像其他模型一样"记忆力衰退"。
看到这里,部分朋友应该已经大概知道,MiniMax-01为什么能拯救dify的知识库问答效果了。
其实就是靠模型自身的超长上下文"**大海捞针"的能力,在这种情况下,即便不用RAG搭建知识库,直接把所有资料内容放在system prompt**中都能达到良好的问答效果。
PS:但是我们现阶段还是会结合RAG来使用,有两个好处:1.利用RAG的能力缩小内容范围,节约tokens(节约成本)2.当知识库内容超出模型支持上下文长度时,还是需要借助RAG缩小范围。
加上kimi支持的上下文长度还不够,所以在当时结合kimi的这个方案并不适合大多数人,土豪可以当我没说。
但是现在出现了一个上下文长度是kimi的30倍,价格是kimi的60分之一,性能还直逼gpt-4o和Claude3.5的开源模型,就大不一样了。
好了,介绍差不多了,我们开始实操~
MiniMax-01拯救dify知识库
顺便提一下,dify在两天前又更新到了v1.1.0版本
修复了不少bug,还增强了一些功能
最大的更新是新增了元数据功能,感兴趣的朋友可以去看dify官方blog:
https://dify.ai/blog/dify-v1-1-0-filtering-knowledge-retrieval-with-customized-metadata
说明一下:不用升级dify也能往下操作
要把minimax-01接入dify,我们还是老规矩,需要获取minimax-01的apikey
apikey创建地址:
https://platform.minimaxi.com/user-center/basicinformation/interface-key
创建好apikey,复制备用
接下来访问dify页面
点击右上角头像->设置
在模型供应商中,找到MiniMax,点击安装
PS:模型供应商安装是从github拉取,最好开启科学上网,不过我实测没有科学上网的情况下,多试几次也能成功安装
弹框如下图,就代表安装成功了
刷新一下页面,点击MiniMax的设置
如下图,需要填写MiniMax的apikey和Group id,然后保存
group id在账户信息这里获取
保存成功后,展开模型,MiniMax-Text-01就是上面所说的minimax-01模型的全称。
这套方案还有另外一个关键点:RAG检索到的相关内容,需要尽可能全面、丰富,就算当中有不太相关的信息也没关系,只要相关信息都在就行。
采用的策略非常简单粗暴:直接一个chunk(块)放一整篇文章,这样完全不需要担心检索到的内容出现不连贯的问题。
dify中刚好有一个父子分块的方式能够在父块中存放整篇文章。
我们先新建一个知识库,导入公众号文章的txt文件,并进入下一步
分段设置选择【父子分段】父块设置为全文,子块不用填分段标识符,分段最大长度直接上最大4000tokens
索引方式选择高质量-混合索引,索引模型和重排模型我选择硅基流动里面的两个免费模型。
topK拉满,score阈值拉到0.1(这是最省事的配置),如果你还是心疼消耗的tokens,可以自行调整参数。点击保存并处理,然后等待文件解析
等待所有文件状态变成可用,就ok了
接下来我们创建一个应用,把这个知识库关联到应用上。
并指定使用MiniMax-Text-01模型
测试一下问答效果:
AUTUMN
这个回答,可以说堪称完美!即全面又详细。
我测试了很多问题,回答的都很棒,都是既全面、又详细,而且minimax-01有自己的一套逻辑来总结表达,不是照搬原文。
AUTUMN
写在最后:更多AI学习资料请添加学习助手领取资料礼包
视频学习资料:
从0开始开发超级AI智能体,干掉所有重复工作
- 基于字节的coze平台从0到1搭建我们自己的智能体
- 从coze到超级创业个体:2025是AI Agent大爆炸的元年!
- 搭建智能体的七大步骤:需求梳理、软件选型、提示工程、数据库、构建 UI 界面、测试评估、部署
- 你的智能体如何并行调用多个通用AI大模型?
- 实战案例:AI Agent提取小红书文案以及图像进行OCR文字识别并同步写入飞书多维表格
- 实战案例:AI Agent提取抖音爆款短视频链接中的文案,基于大模型和提示词完成符合小红书风格和作者特点的文案仿写
DeepSeek AI Agent +自动化助力企业实现 AI 改造实战
- DeepSeek 大模型的本地部署与客户端chatbox本地知识库
- 程序员的跨时代产品,AI 代码编辑器cursor深入浅出与项目构建
- 软件机器人工具影刀RPA工业化地基本使用
- 影刀RPA WEB自动化采集Boss直聘岗位信息并存储
- 影刀AI Power与DeepSeek 工作流构建影刀AI Agent
- AI HR实战:结合影刀RPA+DeepSeek AI智能体,实现智能自动招聘机器人
大模型技术+ 数字人+混剪造就副业王炸组合
- 数字人的概念与价值
- 当前数字人的时代背景
- 数字人的市场需求
- 数字人与自媒体的关系和发展路径
- 商业化数字人的变现之路
- 基于coze搭建数字人超级智能体
- 大模型技术+数字人+混剪=最强副业方向
- AI大模型与数字人造就3分钟获客300条精准线索
- AI副业接单渠道与流量变现
- 程序员开发的AI数字人实战