动态规划之最大字段和


前言

在这里插入图片描述

一、思路

最大字段和问题可以有三种解法:
1.穷举法
2.分治法
3.动态规划法

二、穷举法

穷举每一种可能,两到三层循环,既可以搞定。时间复杂度O(n2)O(n3)

	private static int MaxSubSum(int[] aa) {
		int T,bestI=0,bestJ=0;
		int maxSum=aa[0];
		for (int i = 0; i < aa.length; i++) {
			
			for (int j = i+1; j < aa.length; j++) {
				T=0;
				for(k=i;k<=j;k++){
					T+=aa[k];	
				}
				if(T>maxSum) {
					maxSum=T;
					bestI=i;
					bestJ=j;
				}
			}
			
		}
		System.out.println("该列从第"+(bestI+1)+"位到第"+(bestJ+1)+"位和最大,最大和为:"+maxSum);
		return maxSum;
	}

	private static int MaxSubSum1(int[] aa) {
		int T,bestI=0,bestJ=0;
		int maxSum=aa[0];
		for (int i = 0; i < aa.length; i++) {
			T=aa[i];
			for (int j = i+1; j < aa.length; j++) {
				T+=aa[j];
				if(T>maxSum) {
					maxSum=T;
					bestI=i;
					bestJ=j;
				}
				
			}
			
		}
		System.out.println("该列从第"+(bestI+1)+"位到第"+(bestJ+1)+"位和最大,最大和为:"+maxSum);
		return maxSum;
	}
}

三、分治法

思路:
1)将给定的序列aa,分为aa[0] ~aa[n/2] 和 aa[n/2+1] ~aa[n]。
2)递归求得两端的最大子列和 MaxLeftSum和MaxRightSum。
3)从中点mid分别向两边扫描,找出跨中间跨分界线的最大子列和,MaxMidSum 。
4)MaxSum=Max(MaxLeftSum,MaxRightSum,MaxMidSum )

private static int MaxSubSum2(int[] aa,int left,int right) {
		
		if(left==right) {
			if(aa[left]>0) 
				return aa[left];
			else 
				return 0;
		}
		int mid = (left+right)/2;
		int MaxSum;
		int MaxLeftSum,MaxRightSum,MaxMidSum;
		int MaxLeftMidSum,MaxRightMidSum;
		int LeftMidSum,RightMidSum;
		
		MaxLeftSum = MaxSubSum2(aa,left,mid);
		MaxRightSum = MaxSubSum2(aa,mid+1,right);
		
		MaxLeftMidSum=0;MaxRightMidSum=0;
		LeftMidSum=0;RightMidSum=0;
		for (int i = mid; i >=left; i--) {
			LeftMidSum+=aa[i];
			if(LeftMidSum>MaxLeftMidSum)
				MaxLeftMidSum=LeftMidSum;
		}
		
		for (int i = mid+1; i <=right; i++) {
			RightMidSum+=aa[i];
			if(RightMidSum>MaxRightMidSum)
				MaxRightMidSum=RightMidSum;
		}
		
		MaxMidSum = MaxLeftMidSum+MaxRightMidSum;
		
		if(MaxMidSum>MaxLeftSum)
			MaxSum = MaxMidSum;
		else
			MaxSum = MaxLeftSum;
			
		if(MaxMidSum>MaxRightSum)
			MaxSum = MaxMidSum;
		else
			MaxSum = MaxRightSum;
			
		return MaxSum;
	}

由递归方程可以得出 其时间复杂度为O(nlogn)。

四、动态规划法

1)通过填写dp数组来确定最大字段和大小。
2)dp[i] 数组某一位 i 的大小,为到 i 为止的最大字段和的大小。

dp[i] = Math.max(dp[i-1]+aa[i], aa[i]);

3)下上面代码的意思是,如果dp[i-1]为负数,则dp[i]=aa[i],否者dp[i]=dp[i-1]+aa[i]。
4)例如
aa: 1 -2 3 -4 5 6 7 8dp: 1 -1 3 -1 5 6 7 8

5)对于dp[i]来说,dp[i-1]位不为负数 表示i前面存在大于等于0的的字段,所以应该加上aa[i]去构成dp[i].

	private static int MaxSubSum3(int[] aa) {
		
		int[] dp = new int[aa.length];
		int MaxSum;
		dp[0] = aa[0];//初始化
		
		MaxSum = dp[0];
				
		for (int i = 1; i < bb.length; i++) {
			dp[i] = Math.max(dp[i-1]+aa[i], aa[i]);
			if(dp[i]>MaxSum) {
				MaxSum = dp[i];
			}
			
		}
		return MaxSum;
	}

一层for循环,故其时间复杂度为O(n)。

1.输出最大字段和

记录下最后一次dp赋值给MaxSum的 i 值,拿着MaxSum依次往前去减aa数组,直到MaxSum为零为止。

	private static int MaxSubSum3(int[] aa) {
		
		int[] bdp = new int[aa.length];
		int MaxSum,f=0;
		
		dp[0] = aa[0];
		MaxSum = dp[0];
				
		for (int i = 1; i < bb.length; i++) {
			dp[i] = Math.max(dp[i-1]+aa[i], aa[i]);
			if(dp[i]>MaxSum) {
				f=i;
				MaxSum = dp[i];
			}
			
		}
		int maxsum=MaxSum;
		int s=0;
		for(int j=f;j>=0;j--) {//减到零为 起始位置
			maxsum=maxsum-aa[j];
			if(maxsum==0) {
				s=j;
				break;
			}
				
		}
		System.out.println("最大字段和为:");
		for(int i=s;i<=f;i++)//输出最大字段和
			System.out.print(aa[i]+" ");
		System.out.println();
		return MaxSum;
	}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值