深度学习课程 DAY 2 - 深度学习入门
Chapter 1 深度学习入门
1.1 前言
(1)学习路径
该深度学习教程提供的基本学习路径。通过原理和代码结合、案例和作业结合进行学习。
(2)课程准备
- 知识储备:Python编程、机器学习、深度学习
- 平台:AI Studio和PaddlePaddle
(3)课程特色
原理和代码结合、案例作业比赛应用、飞桨系列产品工具。
2.2 机器学习与深度学习
2.2.1 三个概念的定义和关系
人工智能、机器学习、深度学习的关系
三者的关系如图,人工智能 > 机器学习 > 深度学习。深度学习是机器学习算法的一种,机器学习是实现人工智能的一种方式,人工智能是用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
2.2.2 机器学习
机器学习是专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构,使之不断改善自身的性能。
==============================================================================
【个人理解】研究对象是人的学习行为,研究工具是计算机,目的是模拟人的行为、优化知识结构、提高计算效率
(1)机器学习的实现
机器学习实现步骤:setp1 训练; step2 预测。可用归纳和演绎进行类比。
-
训练
归纳: 从具体案例中抽象一般规律,
训练:从一定数量的样本(已知模型输入X和模型输出Y)中,学习输出Y与输入X的关系(可用某种表达式表示)。 -
预测
演绎: 从一般规律推导出具体案例的结果,
预测”:基于训练得到的Y与X之间的关系。如出现新的输入X,计算出输出Y。
通常情况下,如果通过模型计算的输出和真实场景的输出一致,则说明模型是有效的。
==============================================================================
【个人理解】从大量历史样本得出抽象的关系表达,再用公式预测新的样本。类似统计学的参数估计和假设检验。
(2)机器学习的方法论
- 目标:介绍机器学习的思考过程,过程中模型参数的确定,模型三个关键部分(假设、评价、优化)的应用
- Case:牛顿第二定律
艾萨克·牛顿在1687年于《自然哲学的数学原理》一书中提出的,其常见表述:物体加速度的大小跟作用力成正比,跟物体的质量成反比,与物体质量的倒数成正比。牛顿第二运动定律和第一、第三定律共同组成了牛顿运动定律,阐述了经典力学中基本的运动规律。
1) 实验取样,提出假设
实验方法:倾斜滑动法和水平拉线法