一个pandas中to_sql的效率问题。

在使用Pandas的to_sql函数将数据导入Oracle数据库时,指定数据类型可以显著提高效率。原本耗时半小时的3000条数据导入,在明确每列数据类型后变得迅速。这说明在数据操作中,明确对象类型对于提升性能至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天遇到了一个pandas中to_sql的数据导入数据库的问题
一开始直接使用pd.DataFrame进行取值以后,就直接to_sql,进入数据库,我用的数据库是Oracle,然后进去的值都是COL类型的,可能3000多条用了半小时,后面我指定了每一行值得具体类型以后,就非常快的完成了数据的抓取,反思在过程中,对象也需要明确到底是什么,全部交给代码来分析是不妥当费事的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值