Python 数据可视化实战:多维度销售数据分析与图表绘制
原创 IT小本本 https://mp.weixin.qq.com/s/1-f0nrER_RJbHmC0iIEXMw 2025年03月27日 11:30 北京
本文将通过一个完整的实战案例。读取现有的excel数据,演示如何使用 Python 生成模拟数据、构建多维度分析模型,并结合 matplotlib、seaborn 等库实现 9 种专业图表的绘制。
一、数据读取与存储
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib.patches import Circle
import mplfinance as mpf
1. 数据
-
销售数据:包含 5 大地区 × 5 大品类 × 12 个月的模拟数据,包含销售额、利润、销售量、客户满意度等指标。
-
股价数据: 2023 年 1 月的股票交易数据,包含开盘价、最高价、最低价、收盘价和成交量。
with pd.ExcelWriter('sales_data.xlsx') as writer:
df.to_excel(writer, sheet_name='销售数据', index=False)
stock_df.to_excel(writer, sheet_name='股价数据', index=False)
sales_data.xlsx 数据内容:
二、数据可视化方案
我们将通过 9 种图表类型,从不同维度解析销售数据: