【跑跑Github开源项目系列】基于YOLO和Streamlit的车辆识别系统demo

【跑跑Github开源项目系列】基于YOLO和Streamlit的车辆识别系统demo

写在前面

相信很多朋友跟我一样在github等平台上偷代码 (读书人的事怎么能叫偷呢) 的时候会发现伟大且无私的作者虽然开源了代码但是readme文件该写的没写,requirement文件也没给,代码下载下来一堆报错,压根无法运行,妙啊!这便是我开启本系列的初衷。

这个车辆识别系统的开源项目是我在为毕设找可视化材料的时候无意间发现的,仅是个简单的demo,没有太复杂的东西,也没有过多的报错需要排查,固用这个作为本系列的开篇…

项目代码:https://github.com/streamlit/demo-self-driving

环境配置

创建虚拟环境

下载好项目代码文件后,创建虚拟环境,命名为stcar_demo, python版本下载3.8.5
在这里插入图片描述
不会使用的uu请参考:【教程】虚拟环境与Pytorch安装保姆级教学

激活虚拟环境后便可进行python库的安装

安装库

这个项目开源若干年了,我一开始本以为会有较多的版本配置问题。作者对于包的安装也仅仅用这一句话带过:
在这里插入图片描述
结果经过我自己的测试发现还真就只需要安装streamlitopencv-python就完事儿了…

虚拟环境是刚创建的,直接用以下代码一键安装即可(版本不用管):

pip install streamlit opencv-python

项目运行

streamlit框架的指令格式为:streamlit run <文件名>.py,针对本项目输入以下指令即可

streamlit run streamlit_app.py

一开始便会遇到几个关于streamlit框架的报错,主要是框架版本更新导致的命令更改,不过在这里无伤大雅,直接忽略也可以
在这里插入图片描述
接下来会自动进行yolov3权重文件的下载,耐心等待即可:
在这里插入图片描述
下载完便可以使用这个项目啦!
在这里插入图片描述
虽然整个demo的内容不多,但可以帮助我们理解streamlit框架的构建

That’s all. See you!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

调参侠鱼尾

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值