import tensorflow as tf
import numpy as np
# 构建模型
def get_uncompiled_model():
inputs = tf.keras.Input(shape=(32,), name='digits')
x = tf.keras.layers.Dense(64, activation='relu', name='dense_1')(inputs)
x = tf.keras.layers.Dense(64, activation='relu', name='dense_2')(x)
outputs = tf.keras.layers.Dense(10, name='predictions')(x)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
return model
def get_compiled_model():
model = get_uncompiled_model()
model.compile(optimizer=tf.keras.optimizers.RMSprop(learning_rate=1e-3),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['sparse_categorical_accuracy'])
return model
# 构建数据集
x_train = np.random.random((1000, 32))
y_train = np.random.randint(10, size=(1000, ))
x_val = np.random.random((200, 32))
y_val = np.random.randint(10, size=(200, ))
x_test = np.random.random((200, 32))
y_test = np.random.randint(10, size=(200, ))
# 模型训练(类别5加权