Tensorflow2.0 keras版本模型训练使用样本加权和类别加权(可运行代码案例)

本文详细介绍了如何在Tensorflow2.0的Keras API中实现样本加权和类别加权,以解决数据不平衡问题。通过具体的可运行代码案例,展示了如何在模型训练过程中调整损失函数,以适应不同样本和类别的权重,提升模型的泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import tensorflow as tf
import numpy as np
# 构建模型
def get_uncompiled_model():
    inputs = tf.keras.Input(shape=(32,), name='digits')
    x = tf.keras.layers.Dense(64, activation='relu', name='dense_1')(inputs)
    x = tf.keras.layers.Dense(64, activation='relu', name='dense_2')(x)
    outputs = tf.keras.layers.Dense(10, name='predictions')(x)
    model = tf.keras.Model(inputs=inputs, outputs=outputs)
    return model

def get_compiled_model():
    model = get_uncompiled_model()
    model.compile(optimizer=tf.keras.optimizers.RMSprop(learning_rate=1e-3),
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['sparse_categorical_accuracy'])
    return model

# 构建数据集
x_train = np.random.random((1000, 32))
y_train = np.random.randint(10, size=(1000, ))

x_val = np.random.random((200, 32))
y_val = np.random.randint(10, size=(200, ))

x_test = np.random.random((200, 32))
y_test = np.random.randint(10, size=(200, ))

# 模型训练(类别5加权
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值