队内训练1 反向建图拓扑+DAG上在线跑lca建树+dfs子树大小

本文介绍了一种模拟生物灭绝的算法,通过构建反向有向无环图并结合拓扑排序与LCA算法,实现了对每个生物灭绝时可能引发的连锁反应规模的精确计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

队内训练1 反向建DAG图拓扑+在线跑lca建树+dfs子树大小

题目链接link.

浙江省选题恐怖如斯 究极缝合怪罢了

题意:给你n个点,代表n个生物。接下来n行,每行若干个生物,代表第i个生物能吃掉这些生物。如果某个消费者的所有食物都灭绝了,它会跟着灭绝。我们把一个生物灭绝时会跟着他一起没了的生物的数量定义为灾难值。现在要求出每个生物的灾难值。

这个题思路很妙啊,老实说代码实现起来也不是那么简单毕竟缝合的东西这么多不好debug是吧

建图思路呢,就是如果a吃b,就连一条有向边从b指向a。也就是说这个图的入度为零的点应该是某个生产者。

然后跑拓扑排序得到一个序列。这个序列可以保证,我能吃的所有的食物都出现在我的前面。

最后,考虑怎么建树。我们可以把生物i的所有食物的lca算出来,然后将生物i与lca相连。这样建树就可以保证当一个节点上的生物灭绝时,他子树的所有生物都会随之灭绝。因为这是一边算lca一边往树里面加点一边更新,所以不能用预处理的方法了,只能每插入一个点logn查询lca,记得更新新加进去的点的信息。

AC代码: 位运算少打个括号wa了两天wa成傻逼了

#include<iostream>
#include<cstdio>
#include<vector>
#include<queue>
using namespace std;
struct qaq
{
	int fa;
	vector<int> son;
	int sum;
}tree[70000];

int n;
vector<int>edge[70000];
vector<int>father[70000];
vector<int>ans;
queue<int> q;
int in[70000];

int fa[70000][20];
int dep[70000]; 

int lg(int x)
{
	int ans=0;
	while(x)
	{
		x=x/2;
		ans++;
	}
	return ans;
}

int up(int x,int d)
{
	int ret=x;
	for(int i=0;(1<<i)<=n;i++)
	if(((1<<i)&d)!=0) ret=fa[ret][i];
	
	return ret;
}

int lca(int x,int y)
{
	if(dep[x]<dep[y]) swap(x,y);
	x=up(x,dep[x]-dep[y]);
	if(x==y) return x;
	
	int maxd=lg(dep[x]);
	
	for(int i=maxd;i>=0;i--)
	{
		if(fa[x][i]!=fa[y][i])
		x=fa[x][i],y=fa[y][i];
	}
	return fa[x][0];
}

int dfs(int x)
{
	if(tree[x].son.size()==0)
	{
		tree[x].sum=1;
		//cout<<"x="<<x<<endl;
		return 1;
	}
	
	int ans=1;
	for(auto i:tree[x].son)
	{
		ans+=dfs(i);
	}
	tree[x].sum=ans;
	//cout<<"tree["<<x<<"]="<<ans<<endl;
	return ans;
}

int main( )
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	{
		while(1)
		{
			int x;
			scanf("%d",&x);
			if(x==0) break;
			//输入的x是i的父亲们(他i吃谁x) 
			//边应该是由x指向i的
			edge[x].push_back(i);
			father[i].push_back(x);
			in[i]++;
		}
	}
	
	for(int i=1;i<=n;i++)
	{
		if(in[i]==0) 
		q.push(i);
	}
	
	while(!q.empty())
	{
		int xx=q.front();
		q.pop();
		ans.push_back(xx);
		
		for(auto i:edge[xx])
		{
			in[i]--;
			if(in[i]==0)
			q.push(i);
		}
	}
	
	int summ=0;
	
	tree[0].fa=0;
	dep[0]=0;
	fa[0][0]=0;
	
	for(auto i: ans)
	{
		if( father[i].size()==0 )
		{
			tree[0].son.push_back(i);
			tree[i].fa=0;
			
			dep[i]=1;
			fa[i][0]=0;
		}
		else if( father[i].size( )==1 )
		{
			int haha=father[i][0];
			dep[i]=dep[haha]+1;
			fa[i][0]=haha;
			for(int j=1;(1<<j)<=n;j++)
			{
				fa[i][j]=fa[fa[i][j-1]][j-1];
				//cout<<"fa["<<i<<"]["<<j<<"]="<<fa[i][j]<<endl;
			}
			
			tree[haha].son.push_back(i);
			tree[i].fa=haha;
		}
		else
		{
			int lcaa=lca(father[i][0],father[i][1]);
			for(int j=2;j<father[i].size();j++)
			{
				lcaa=lca(lcaa,father[i][j]);
				if(lcaa==0) break;
			}
			dep[i]=dep[lcaa]+1;
			fa[i][0]=lcaa;
			for(int j=1;(1<<j)<=n;j++)
			{
				fa[i][j]=fa[fa[i][j-1]][j-1];
			}
			tree[lcaa].son.push_back(i);
			tree[i].fa=lcaa;
		}
	}
	
	int xi=dfs(0);
	//cout<<"xi="<<xi<<endl;
	
	for(int i=1;i<=n;i++)
	printf("%d\n",tree[i].sum-1);
	
	return 0; 
} 
资源下载链接为: https://pan.quark.cn/s/f989b9092fc5 在 Android 应用开发中,开发一款仿 OPPO 手机计算器的应用是极具实践价值的任务,它融合了 UI 设计、事件处理以及数学逻辑等多方面的技术要点。当前的“最新版仿 OPPO 手机计算器--android.rar”压缩包中,提供了该计算器应用的源代码,这为开发者深入学习 Android 编程提供了宝贵的资源。 UI 设计是构此类计算器应用的基石。OPPO 手机的计算器界面以清晰的布局和良好的用户交互体验著称,其中包括数字键、运算符键以及用于显示结果的区域等关键元素。开发者需借助 Android Studio 中的 XML 布局文件来定义这些界面元素,可选用 LinearLayout、GridLayout 或 ConstraintLayout 等布局管理器,并搭配 Button 控件来实现各个按键功能。同时,还需考虑不同分辨率屏幕和设备尺寸的适配问题,这通常涉及 Density Independent Pixel(dp)单位的应用以及 Android 尺寸资源的合理配置。 事件处理构成了计算器的核心功能。开发者要在每个按钮的点击事件中编写相应的处理代码,通常通过实现 OnClickListener 接口来完成。例如,当用户点击数字键时,相应的值会被添加到显示区域;点击运算符键时,则会保存当前操作数并设定运算类型。而对于等号(=)按钮,需要执行计算操作,这往往需要借助栈数据结构来存储操作数和运算符,并运用算法解析表达式以完成计算。 数学逻辑的实现则是计算器功能的关键体现。在 Android 应用中,开发者可以利用 Java 内置的 Math 类,或者自行设计算法来完成计算任务。基本的加减乘除运算可通过简单的算术操作实现,而像求幂、开方等复杂运算则需调用 Math 类的相关方法。此外
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值