【论文速递】CVPR2019 - 通过选择性跨域对齐调整目标检测器
【论文原文】:Adapting Object Detectors via Selective Cross-Domain Alignment
【作者信息】:Xinge Zhu; Jiangmiao Pang; Ceyuan Yang; Jianping Shi; Dahua Lin
获取地址:http://openaccess.thecvf.com/content_CVPR_2019/papers/Zhu_Adapting_Object_Detectors_via_Selective_Cross-Domain_Alignment_CVPR_2019_paper.pdf
博主关键词: 目标检测
推荐相关论文:
无
摘要:
最先进的目标检测器通常在公共数据集上进行训练。当应用于不同的领域时,它们通常面临很大的困难,其中成像条件明显不同,并且相应的注释数据不可用(或获取成本很高)。一种自然的补救措施是通过对齐两个域上的图像表示来调整模型。例如,这可以通过对抗学习来实现,并且已被证明在图像分类等任务中是有效的。然而,我们发现在目标检测中,以这种方式获得的改进是相当有限的。一个重要原因是,传统的域适应方法努力将图像作为一个整体对齐,而目标检测本质上侧重于可能包含感兴趣对象的局部区域。受此启发,我们提出了一种用于目标检测的域自适应新方法,以处理“在哪里看”和“如何对齐”的问题。我们的关键思想是挖掘判别区域,即与目标检测直接相关的区域,并专注于在两个域中对齐它们。实验表明,在保持良好扩展性的同时,所提方法的性能明显优于现有方法,在各种域转移场景下提高了约4%∼6%。
关键词 - 目标检测。