在深度学习和模型训练中,利用 GPU 进行加速是常见的做法,而在拥有多张显卡的情况下,学会查看本地的 GPU 列表并合理选择分布式并行训练的方法是提高训练效率的重要手段。接下来,我将介绍如何使用 Python 查看本地的显卡列表,讲解几种常见的分布式训练方法及其具体实现代码,并对这些方法进行比较分析,以便你选择最适合的方案。
1. 如何查看本地的显卡列表
你可以通过多种方式查看本地的显卡列表。例如,使用 GPUtil
库可以轻松获取显卡信息:
import GPUtil
# 获取所有可用的显卡信息
gpus = GPUtil.getGPUs()
for gpu in gpus:
print(f"GPU ID: {
gpu.id}, Name: {
gpu.name}, Driver Version: {
gpu.driver}, Memory Total: {
gpu.memoryTotal}MB")
如果你希望查看 NVIDIA 显卡的状态信息,可以使用 py3nvml
库:
from py3nvml import nvmlInit, nvmlDeviceGetCount, nvmlDeviceGetHandleByIndex, nvmlDeviceGetName
# 初始化 NVML
nvmlInit()
# 获取显卡数量
device_count = nvmlDeviceGetCount()
for i in range(device_count):
handle = nvmlDeviceGetHandleByIndex(i)
print(f"GPU {
i}: {
nvmlDeviceGetName(handle).decode('utf-8')}")
对于已经安装了 PyTorch 的用户,可以直接使用 PyTorch 自带的函数来查看可用的 CUDA 设备:
import torch
if torch.cuda.is_av