大模型 - 分布式训练方法汇总

在深度学习和模型训练中,利用 GPU 进行加速是常见的做法,而在拥有多张显卡的情况下,学会查看本地的 GPU 列表并合理选择分布式并行训练的方法是提高训练效率的重要手段。接下来,我将介绍如何使用 Python 查看本地的显卡列表,讲解几种常见的分布式训练方法及其具体实现代码,并对这些方法进行比较分析,以便你选择最适合的方案。

在这里插入图片描述

1. 如何查看本地的显卡列表

你可以通过多种方式查看本地的显卡列表。例如,使用 GPUtil 库可以轻松获取显卡信息:

import GPUtil

# 获取所有可用的显卡信息
gpus = GPUtil.getGPUs()

for gpu in gpus:
    print(f"GPU ID: {
     
     gpu.id}, Name: {
     
     gpu.name}, Driver Version: {
     
     gpu.driver}, Memory Total: {
     
     gpu.memoryTotal}MB")

如果你希望查看 NVIDIA 显卡的状态信息,可以使用 py3nvml 库:

from py3nvml import nvmlInit, nvmlDeviceGetCount, nvmlDeviceGetHandleByIndex, nvmlDeviceGetName

# 初始化 NVML
nvmlInit()

# 获取显卡数量
device_count = nvmlDeviceGetCount()

for i in range(device_count):
    handle = nvmlDeviceGetHandleByIndex(i)
    print(f"GPU {
     
     i}: {
     
     nvmlDeviceGetName(handle).decode('utf-8')}")

对于已经安装了 PyTorch 的用户,可以直接使用 PyTorch 自带的函数来查看可用的 CUDA 设备:

import torch

if torch.cuda.is_av
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值