【Pytorch】0.2 Linear Model(刘二大人课后习题)

这篇博客通过Python代码展示了如何绘制一个二维参数的损失函数的3D图像。使用了numpy和matplotlib库,定义了前向传播、损失函数和MSE损失函数,并生成了数据点。然后,通过meshgrid创建参数网格并计算每个点的损失,最后使用matplotlib的plot_surface函数绘制了三维图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

task: 绘制二维参数的损失函数

在这里插入图片描述

Python代码实现

#1. 导入库
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

#2. 定义函数
def forward(x):
    return x*w+b
def loss(x,y):
    y_pred=forward(x)
    return (y_pred-y)*(y_pred-y)
def MSE(w,b):
    l_sum=0
    print('w=',w,'\n','b=',b)
    for x_val,y_val in zip(x_data,y_data):
        y_pred_val=forward(x_val)
        loss_val=loss(x_val,y_val)
        l_sum+=loss_val
        #print("\n",x_val,y_val,y_pred_val,'loss=',loss_val,'l_sum=',l_sum)
    return l_sum/3

#3. 生成二维平面
x_data=[1.0,2.0,3.0]
y_data=[2.0,4.0,6.0]

w = np.arange(0.0,4.1,0.05)
b = np.arange(-2.0, 2.1, 0.05)
w, b = np.meshgrid(w, b)
h=MSE(w,b)
print('h=',h)

#4. 绘图
fig = plt.figure()
#ax = Axes3D(fig)#画不出图,不明白为什么
#有博主说:import matplotlib; matplotlib.use('TkAgg')
ax = fig.add_subplot(111, projection='3d')
surf = ax.plot_surface(w, b, h,rstride=1,cstride=1,cmap=plt.get_cmap('rainbow'))
fig.colorbar(surf, shrink=0.5, aspect=5)
plt.show()

在这里插入图片描述

得到三维图像
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值