【Pytorch】0.3 Gradient Descent(笔记)

本文介绍了两种梯度下降方法:梯度下降和随机梯度下降。梯度下降通过求三组数据梯度的平均值进行训练,但易陷入鞍点;而随机梯度下降则针对每组数据单独计算梯度,虽然训练时间较长,但能够有效避免鞍点问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

梯度下降(Gradient Descent)

  • 思想每一轮,求三组数据的梯度(变量为w)的平均值,梯度下降进行训练
  • 劣势:求均值后容易陷入“鞍点”,梯度为0,w不能继续训练至最优解

在这里插入图片描述



随机梯度下降(Stochastic Gradient Descent)

  • 思想:每一轮,三组数据分别算梯度(变量为w),w不断进行训练,相当于每一轮w更新三次
  • 缺点:并行能力差,训练时间长
  • 解决方案:batch*(暂时还不太理解)*
    在这里插入图片描述



对比分析:

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值