
1. transforms的基本使用
import cv2
import numpy as np
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms #可使用结构查看具体构成
#python的用法 - 》tensor数据类型
#通过 transforms.ToTensor去看两个问题
#1.transforms该如何使用(python)
#2 为什么需要tensor数据类型:包装了反向传播需要的信息
img_path = 'dataset/train/dog/dog.jpg'
img = Image.open(img_path) #python内置的Image 需要引入 alt+enter
print(type(img))
print('__________')
narray_img = np.array(img)
# print(narray_img)
print(type(narray_img))
print('__________')
cv_img = cv2.imread(img_path)
# print(cv_img)
print(type(cv_img))
print('__________')
tensor_trans = transforms.ToTensor() #创建实例对象
tensor_img = tensor_trans(img) #ctrl+p查看参数
# print(tensor_img)
print(type(tensor_img))
writer = SummaryWriter('logs')
writer.add_image('tf',tensor_img)
writer.close()
2. transform