torchvision中transforms的使用

1. transforms的基本使用

import cv2
import numpy as np
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms #可使用结构查看具体构成

#python的用法 - 》tensor数据类型
#通过 transforms.ToTensor去看两个问题
#1.transforms该如何使用(python)
#2 为什么需要tensor数据类型:包装了反向传播需要的信息

img_path = 'dataset/train/dog/dog.jpg'
img = Image.open(img_path)  #python内置的Image 需要引入 alt+enter
print(type(img))


print('__________')

narray_img = np.array(img)
# print(narray_img)
print(type(narray_img))

print('__________')

cv_img = cv2.imread(img_path)
# print(cv_img)
print(type(cv_img))

print('__________')

tensor_trans = transforms.ToTensor() #创建实例对象
tensor_img = tensor_trans(img) #ctrl+p查看参数
# print(tensor_img)
print(type(tensor_img))

writer = SummaryWriter('logs')
writer.add_image('tf',tensor_img)
writer.close()

2. transform

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值