OpenCV-33 开运算和闭运算

本文介绍了在计算机视觉中,开运算(腐蚀+膨胀)和闭运算(膨胀+腐蚀)用于噪声去除的方法,以及形态学梯度(原图-腐蚀)的概念。通过OpenCV库的`morphologyEx`函数实现这些操作,展示了如何在实际代码中应用这些技术来处理图像噪声。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、开运算

二、闭运算

三、形态学梯度


开运算和闭运算都是腐蚀和膨胀的基本应用。

一、开运算

开运算 = 腐蚀+膨胀(腐蚀之后再膨胀)

开运算提供了另一种去除噪声的思路。(腐蚀先进行去噪,膨胀再还原图像)

通过API --- morphologyEx(img, MORPH_OPEN, kernel)

  • MORPH_OPEN 表示形态学的开运算
  • kernel 如果噪点比较多,会选择大一点的kernel, 如果噪点比较小,可以选择小点的kernel

示例代码如下:

import cv2
import numpy as np
cv2.namedWindow("img", cv2.WINDOW_NORMAL)
cv2.resizeWindow("img", 640, 480)
img = cv2.imread("i.png")
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
# # 先腐蚀
# new_img = cv2.erode(img, kernel, iterations=1)
# # 后膨胀
# new_img = cv2.dilate(new_img, kernel, iterations=1)
new_img = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel, iterations=1)
cv2.imshow("img", np.hstack((img, new_img)))
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下:

经测试我们可以发现,对图片进行先腐蚀后膨胀的操作与直接进行开运算的操作效果一样。 

且开运算能有效去除图片中的噪声,为我们提供一种新的去除噪声的方法。

二、闭运算

闭运算 = 膨胀+腐蚀(膨胀之后再腐蚀)

膨胀会对噪声的变大,再进行腐蚀操作可以去除图片内部的噪声点

通过使用同样的API --- morphologyEx对其进行操作,改为MORPH_CLOSE

若是imread没有去读到东西是不会报错的,只会返回一个None

示例代码如下:

import cv2
import numpy as np
cv2.namedWindow("img", cv2.WINDOW_NORMAL)
cv2.resizeWindow("img", 640, 480)
img = cv2.imread("is.png")
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
# 闭运算
new_img = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel, iterations=1)
cv2.imshow("img", np.hstack((img, new_img)))
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下:

三、形态学梯度

梯度 = 原图-腐蚀

腐蚀之后原图边缘变小,原图 - 腐蚀就可以得到腐蚀掉的部分,即边缘。

若腐蚀的部分越少,则得到的边缘部分越多。

通过使用同样的API --- morphologyEx对其进行操作,改为MORPH_GRADIENT

示例代码如下:

import cv2
import numpy as np
cv2.namedWindow("img", cv2.WINDOW_NORMAL)
cv2.resizeWindow("img", 640, 480)
img = cv2.imread("iii.png")
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# 形态学梯度
new_img = cv2.morphologyEx(img, cv2.MORPH_GRADIENT, kernel, iterations=1)
cv2.imshow("img", np.hstack((img, new_img)))
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下:

<think>好的,我需要回答用户关于如何在OpenCV-Python中实现运算的问题。首先,我要回忆运算的基本概念,知道它是先腐蚀后膨胀的过程,用于消除小物体、平滑边界。然后,我需要查找OpenCV中对应的函数,应该是cv2.morphologyEx,使用的操作类型是MORPH_OPEN。 接下来,我需要确保示例代码的正确性。步骤包括读取图像、转换为灰度图、二值化处理,然后创建结构元素,应用运算。记得导入cv2numpy库。可能需要检查参数是否正确,比如结构元素的大小形状,通常是矩形或椭圆。 用户提供的引用中提到了一些资源,比如引用[2][3],虽然引用[3]是关于位运算的,但可能需要确认是否有相关的内容被错误引用。不过主要参考引用[2],里面提到了运算的使用方法实例,所以应该结合这些信息来构建回答。 还要注意生成相关问题,比如开闭运算的区别、结构元素的影响、常见应用场景等。需要确保问题相关且有针对性,帮助用户深入理解。 最后,检查格式要求:行内公式用$...$,独立公式用$$...$$,中文回答,代码块正确,引用标识正确添加。确保LaTeX语法正确,比如数学表达式是否正确转义,结构元素核的数学表示可能需要用公式展示。</think>### OpenCV-Python运算实现方法 运算是形态学操作的一种,由**先腐蚀后膨胀**的连续操作构成,主要用于消除小物体、平滑边界并保持主要结构不变[^2]。 #### 实现步骤 1. **导入库文件** ```python import cv2 import numpy as np ``` 2. **图像预处理** ```python # 读取图像并转换为灰度图 img = cv2.imread('noisy_image.png', cv2.IMREAD_GRAYSCALE) # 二值化处理 _, binary_img = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY) ``` 3. **创建结构元素** ```python kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5)) # 5x5矩形核 ``` 结构元素的数学表示: $$ K = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} $$ 4. **执行运算** ```python opened_img = cv2.morphologyEx(binary_img, cv2.MORPH_OPEN, kernel) ``` #### 效果对比 原始图像中的细小噪点(如$diameter < 5px$的孤立点)会被消除,而主要物体轮廓(直径$D \geq 5px$)保持完整[^2]。 #### 完整示例 ```python import cv2 import numpy as np # 创建带噪点的测试图像 canvas = np.zeros((300,300), dtype=np.uint8) cv2.circle(canvas, (150,150), 100, 255, -1) # 主物体 # 添加噪点 canvas[50,50] = 255 canvas[250,250] = 255 # 执行运算 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7,7)) result = cv2.morphologyEx(canvas, cv2.MORPH_OPEN, kernel) # 显示结果 cv2.imshow('Original', canvas) cv2.imshow('Opened', result) cv2.waitKey(0) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一道秘制的小菜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值