自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

迷茫与徘徊只会让你陷入绝境,欢迎私信博主,带你开始提升变现价值!

毕设指导、课程设计、代码辅导讲解、职业规划、商业合作等。 神奇的代码之旅-和你一同开启!希望技术的星星之火可以点燃我们对生活的激情向往!ヾ(◍°∇°◍)ノ゙

  • 博客(497)
  • 资源 (97)
  • 收藏
  • 关注

原创 【总目录】机器学习原理剖析、开源实战项目、全套学习指南(50篇合集)

相信不管此时的你是怀着好奇心打开这篇文章;还是偶然间刷到这篇博文;或者带有学习目的性走到这片领域,我都相信,面前的你一定会成功,因为你懂得投资和学习。学习是一个不断发展的过程,我们要用联系的眼光看待事物,也要用发展的眼光考虑未来,更要有适度的投资建设自己。不是每一次的遇见都是那么的巧合,也不是每一次的邂逅都会成就一段美好,所以你要相信,你和这篇文章的遇见也是更高层次的探索。机器学习算法知识、数据预处理、特征工程、模型评估——原理+案例+代码实战1、机器学习之Python开源教程——专栏介绍及理论知识概述。.

2022-08-24 00:01:39 4247 28

原创 【全网首发】言简意赅的Python全套语法,内附详细知识点和思维导图!【强烈建议收藏!】

Python是近几年比较火热的编程语言,至于有多火热?偶尔打开微信公众号,页面下面弹出的是《Python训练营》,打开朋友圈发现有推荐学习Python的课程,打开CSDN,发现热榜第一又是Python推荐文章,不得不说Python的影响力在目前还是比较大的,这和Python社区的宣传力度有着密切的关系!目前学习Python的人有多少呢?那些人在学习Python呢?至于这个问题,我认为没有一个准确的答案,因为每一天学习Python的人都在增加,学习Python被越来越多的人注重,所以要回答这个问题,最好的

2021-04-16 13:21:46 51499 1436

原创 上百种Python炫酷可视化案例珍藏版——看完掌握~一键三连~老板都想要给你升职加薪哟!

数据可视化是当下火热的大数据应用技术,很多新锐地大数据分析工具都注重开发数据可视化的功能模块。数据可视化及其技术研究和应用开发,已经从根本上改变了我们对数据和数据分析工具的理解,数据可视化对大数据发展的影响广泛而深入。数据可视化在近几年十分火热,但它到底是什么意思很多人却并不很清楚。从广义上来说,可视化无处不在, 打开浏览器, 网站就是个数据可视化, 背后是数据库密密麻麻的数据表, 到了你的浏览器就是浅显易懂的页面。帮助人更好的分析数据是数据可视化存在的意义,它对数据中所包含的意义进行分析,使分析结

2021-04-12 12:17:05 12218 74

原创 80行快乐代码与你窥探爬虫的数据深渊——教你如何高效快速任意爬虫(附大量项目案例和语法解析文章)

前端工程师把数据和网页完美的结合在一起,他们以为这样是最美丽的契合,殊不知,后端的那些工程师宝宝们,一天没事干,把他们的老窝给惊扰了,爬虫给网站带来的危害是比较大的,如果一个服务器一般被很多用户访问,可能它会宕机,也可能会崩溃,那么一个机器通过编程手段来达到这个目的,一分钟的点击次数,同时点击所达到的次数,机器不会累,于是网站被他们端了。一切都要恰到好处,于是他们商量好了,礼貌的访问,隐隐约约的访问,悄悄咪咪的访问,有节制的去获取数据,慢慢的前端工程师和后端工程师关系越来也好了,最终他们诞生了幸福的结晶..

2021-04-09 14:40:19 12550 58

原创 Python爬取热搜数据之炫酷可视化

可视化展示看完记得点个赞哟微博炫酷可视化音乐组合版来了!项目介绍背景现阶段、抖音、快手、哗哩哗哩、微信公众号已经成为不少年轻人必备的“生活神器”。在21世纪的今天,你又是如何获取外界的信息资源的?相信很多小伙伴应该属于下面这一种类型的:事情要想知道快,抖音平台马上拍;微博热搜刷一刷,聚焦热点不愁卖;闲来发呆怎么办, B 站抖音快手来;要是深夜无聊备,微信文章踩一踩;哈哈哈,小小的活跃一下气氛在这个万物互联的时代,已不再是那个“从前慢,车马慢....

2021-02-15 18:08:56 19168 76

原创 基于深度学习Transform的steam游戏特征分析与可视化【词云-情感词典分析-主题分析-词频分析-关联分析】

摘要:本项目通过爬取Steam平台10万条游戏评论数据,运用文本分析、情感分析和数据挖掘技术,深入研究玩家对不同类型游戏的偏好特征和情感倾向。采用词云分析、LDA主题建模、BERT情感分类等方法,构建可视化分析体系,揭示玩家行为模式与游戏体验的关键因素,为游戏开发提供数据驱动的优化建议。研究成果不仅适用于游戏产业,还可扩展至餐饮、景区等领域的用户评论分析,具有广泛的商业应用价值。

2025-07-22 16:52:00 614

原创 基于深度学习的语音情感识别系统的设计与实现【BiLSTM、多层感知神经网络、Emotion2Vec、与CustomFeature】

本研究基于PyTorch框架开发了语音情感识别系统,采用RAVDESS数据集中的8种情感类别(中性、平静、快乐等)。通过Emotion2Vec和CustomFeature方法提取音频特征,并对比BiLSTM、BaseModel等深度学习模型性能,结合数据增强提升泛化能力。系统采用Flask框架实现Web部署,支持用户音频上传、情感识别及结果可视化功能,同时提供管理员后台管理。创新点在于多模型对比、特征融合策略和用户友好的系统设计,为智能客服等领域提供技术支持。

2025-07-22 09:28:08 389

原创 基于深度学习的交通拥堵预测系统的设计与实现

本项目基于Keras框架构建LSTM和GRU模型,对英国高速公路交通流量进行时序预测。通过数据预处理、建模训练及可视化分析,开发了基于Flask的预测系统。LSTM模型表现最佳,拟合度达99.7%。系统支持用户交互和管理员数据管理,为缓解交通拥堵提供决策支持。项目实现了从数据处理到应用部署的全流程,具有实际应用价值。

2025-07-22 09:06:47 577

原创 基于Catboost、XGBoost、LightGBM、线性回归的太原市二手房数据采集与房价分析预测系统的设计与实现

摘要:本项目基于链家网2万条太原市二手房数据,采用网络爬虫技术获取多维度房源信息,通过数据清洗和特征工程处理后,建立CatBoost房价预测模型(R²=0.88)。系统整合Flask框架实现可视化交互平台,包含用户预测、管理员管理及多维数据分析功能。项目亮点在于全流程自动化实现、高精度建模及可视化展示,为购房决策、市场分析提供智能化支持。实验证明该系统在房产市场数据挖掘方面具有实用价值和推广潜力。

2025-07-21 09:12:18 904

原创 基于多种机器学习的成都市二手房房价分析与价格预测【城市可换、算法模型多种对比】

本研究通过对成都二手房市场的多维度分析,探讨了影响房价的关键因素,并对三种常用回归模型(随机森林、XGBoost和LightGBM)进行了比较评估。研究的主要结论如下:首先,分析结果表明,房价受多种因素的影响,其中建筑面积、总房间数和户型结构等因素对房价具有显著的正向影响。此外,地区、交易年份等变量也对房价有一定程度的影响。基于这些发现,可以为政策制定者和房地产开发商提供重要的市场洞察,帮助他们更好地预测房价波动和优化产品布局。

2025-07-21 09:00:52 874

原创 基于多种深度学习的果蔬识别系统的设计与实现【识别万能模板算法、GoogLeNet、ResNet18、ResNet34、ResNet50、Inception_v3、MobileNet_v2 】

本文介绍了一个基于深度学习的果蔬图像识别系统,通过对GoogLeNet、ResNet等6种CNN模型的对比研究,结合大规模数据集(262种果蔬、22.6万张图像)和Mixup等数据增强技术,构建了高精度的识别模型。系统采用Flask框架开发,具备用户友好的前端界面,支持跨平台部署,在复杂环境下表现出良好的鲁棒性和泛化能力。该研究不仅为农业智能化提供了实用解决方案,也探索了轻量化模型在边缘设备中的应用潜力。项目强调技术落地的实用价值,为果蔬识别领域的数字化发展提供了参考。

2025-07-16 15:22:38 967

原创 基于大数据技术的新能源车股市数据分析系统的设计与实现【全网独有精美K线图、可加深度学习预测】

本项目构建了一个基于Web的比亚迪股票数据分析与可视化系统,实现从数据采集到交互展示的全流程解决方案。通过Python爬虫获取东方财富网的历史交易数据,经Pandas清洗后存储至MySQL数据库。系统采用Pyecharts等工具生成多维图表,包括K线图、均线分析、资金流向等可视化模块,支持用户通过Web界面交互查询。项目还具备用户权限管理功能,为投资者和研究人员提供直观的数据洞察工具。系统可扩展支持更多股票和量化分析模型,未来可结合深度学习实现股价预测功能。

2025-07-16 14:43:05 761

原创 基于大数据电信诈骗行为分析与可视化预测系统的设计与实现【海量数据、多种机器学习对比、数据优化、过采样】

本文介绍了一个电信诈骗预测与分析系统,通过整合大数据处理、机器学习与交互式可视化技术,构建了一套综合性反诈骗解决方案。系统包含数据预处理、可视化分析、预测建模(随机森林/XGBoost/LightGBM)和用户界面四大模块,具备实时预警、多维分析和报告生成功能。技术亮点包括分布式计算、模型优化和流数据处理,应用价值覆盖运营商风控、监管决策和公众防护。未来计划拓展NLP分析、移动端应用和区块链技术,致力于构建更安全的通信环境。系统代码与部署支持可通过私信获取。

2025-07-16 14:19:57 896

原创 基于大数据的网络文学推荐分析系统的设计与实现【海量书籍、自动爬虫】

本文介绍了一个基于大数据技术的网络文学推荐与分析系统,旨在解决网络文学作品信息过载问题。系统通过Python爬虫获取豆瓣图书数据,采用Django框架实现前后端分离架构,集成Echarts进行多维度可视化分析,并运用协同过滤算法提供个性化推荐。项目解决了反爬虫机制、冷启动等挑战,实现了数据采集、用户管理、推荐算法等核心功能。未来计划优化推荐算法并扩展数据源,提升系统智能化水平和用户体验。该系统为网络文学资源管理提供了有效解决方案,具有良好应用前景。

2025-07-16 14:07:09 721

原创 基于Hadoop与LightFM的美妆推荐系统设计与实现

本项目基于Hadoop大数据平台与机器学习技术,构建美妆个性化推荐系统。通过Python爬虫采集微博、电商平台百万级用户行为数据,利用jieba分词、HiveSQL进行数据预处理与分析。采用LightFM和SVD++混合推荐算法实现精准推荐,并通过Flask+Vue搭建响应式Web界面。系统整合数据采集、处理、算法优化及可视化全流程,为美妆行业提供智能推荐解决方案,实现用户需求与市场趋势的双向洞察。(注:项目代码/部署可私信获取)

2025-07-16 13:57:31 964

原创 【全网最详】针对数据分析中异常值检测的方法大全【代码+实战演练】

本文介绍了四种常用的异常值检测方法及其应用场景。IQR(四分位距法)基于统计分位数,适用于单变量分析,简单高效但对多变量无效。Isolation Forest通过随机分割特征空间来检测异常,适合高维数据且计算复杂度低。DBSCAN基于密度聚类,能识别任意形状的簇并将噪声点标记为异常。LOF(局部离群因子)通过比较局部密度差异检测异常,适合发现局部异常但不适用于高维数据。每种方法都有其优缺点和适用场景,需根据具体业务需求选择合适的方法,并调整关键参数以获得最佳检测效果。文末提供了Python实现示例,便于快速

2025-07-16 11:22:56 930

原创 基于深度学习的LSTM、GRU对大数据交通流量分析与预测的研究

本文基于英国M4高速公路实测数据,提出了一种结合深度学习的短期交通流量预测方法。通过数据清洗、EMD去噪和5分钟粒度增强等预处理,对比LSTM与GRU模型性能,结果表明LSTM在MAE(7.197)和R²(0.997)等指标上表现更优。研究开发了Flask可视化预测系统,实现了动态更新和交互查询功能,为智慧交通管理提供了有效工具。创新点包括动态时间步调整、在线模型更新机制及多维数据归一化处理,兼具理论价值与实践意义。

2025-07-15 14:19:54 1036

原创 基于YOLOv8的水稻叶片病害检测系统的设计与实现【近6W条数据集+多病害特征+高准确率】

本研究开发了基于YOLOv8的水稻叶片病害智能检测系统,整合54,970张涵盖9种病害的图像数据集,采用数据增强和手工标注优化模型性能。系统通过PyQt5界面支持多源输入,实现了90%以上的平均检测精度,在稻瘟病等主要病害识别中表现突出,但对鞘病等相似病害仍存在误检。研究揭示了数据分布不均对模型的影响,并通过混淆矩阵等评估手段提出改进方向。该系统为农业病害自动化检测提供了高效解决方案,未来可进一步优化少数类别识别效果。

2025-07-15 14:02:52 978

原创 基于YOLOV8的烟火检测报警系统的设计与实现【全网独一、报警声音机制、实时画面、系统交互、日志记录】

本文基于YOLOv8算法开发了一套智能火灾检测系统,通过深度学习技术实现对火焰和烟雾的实时识别。研究采用多种数据源构建高质量数据集,并进行多轮模型优化实验,结果表明轻量级YOLOv8n模型在速度和精度间取得良好平衡。系统支持图像、视频、实时监控等多种检测模式,具备声音报警和日志记录功能。实验发现火焰检测准确率高于烟雾,未来将重点优化烟雾识别能力。该系统为火灾预警提供了高效解决方案,具有重要的公共安全应用价值。

2025-07-14 17:20:28 1066

原创 基于Python的重庆市旅游景区数据分析与可视化系统的设计与实现【城市可换、自动抓取】

旅游景区数据管理与推荐系统摘要 本项目开发了一个综合性旅游景区数据管理与分析系统,主要功能包括: 核心功能模块 多级用户权限管理 ECharts数据可视化大屏(含词云、热度分析等) 景点信息CRUD管理 协同过滤推荐算法 自动化数据爬取功能 技术创新点 集成爬虫实现一键数据更新 多维度可视化数据展示 用户行为分析与个性化推荐 实时数据流处理架构 模块化可扩展设计 系统优势 提升景区管理效率 增强游客使用体验 数据驱动决策支持 良好的可移植性 系统采用前后端分离架构,支持二次开发,可扩展为不同场景下的数据分析

2025-07-14 17:05:41 852

原创 基于Python的物联网岗位爬取与可视化系统的设计与实现【海量数据、全网岗位可换】

随着物联网技术的迅速发展,物联网行业已成为信息技术领域的重要组成部分,涉及工业、医疗、交通、农业、家居等多个应用场景,市场对物联网专业人才的需求日益增长。然而,当前物联网就业市场信息存在分散、零碎、缺乏系统分析等问题,求职者难以及时了解行业最新动态,企业也面临招聘效率低、岗位匹配度不高的挑战。传统招聘网站多仅提供简单的信息检索与列表展示,缺乏针对物联网行业的深度数据挖掘和趋势分析。基于此背景,开发一套集数据采集、分析和可视化于一体的系统,对促进物联网行业人才供需平衡、提升就业服务质量具有重要意义。

2025-07-14 16:46:33 1276

原创 基于Python的猎聘网程序员岗位数据分析系统的设计与实现

本文介绍了一个基于Python的猎聘网程序员岗位数据分析系统。该系统利用网络爬虫采集程序员岗位的多维度信息,通过数据清洗和预处理后,采用CatBoost机器学习模型进行薪资预测。系统实现了数据分析可视化(行业分布、薪资范围等)和个性化薪资预测功能,帮助求职者合理定位,为企业提供招聘参考。采用Flask后端和LayUI前端框架,支持用户注册、主题更换等交互功能。测试表明系统运行稳定,未来可扩展多数据源和移动端应用。该项目将数据科学与实际需求结合,为人才市场决策提供数据支持。

2025-07-14 10:17:49 792

原创 基于Python的就业数据获取与分析预测系统的设计与实现

基于 Python 的就业数据获取与分析预测系统”集数据采集、处理、分析、预测与展示于一体,充分发挥了 Python 在数据科学领域的强大能力。它不仅是一款技术创新项目,更是面向实际就业需求,服务大众的重要应用,具有广阔的社会与市场价值。

2025-07-14 10:10:26 1192

原创 基于Hadoop的天猫用户购物行为可视化分析与LightFM隐式推荐系统的设计与实现

本项目基于Hadoop生态构建电商推荐系统,整合了大数据处理与机器学习技术。系统采用Flume采集用户行为数据,通过Hive构建多层数据仓库,使用LightFM模型进行个性化推荐,最终通过Flask实现可视化展示。实现了从数据采集、存储分析到模型训练、推荐展示的完整流程,有效提升了电商平台的用户体验与运营效率。

2025-07-12 14:00:00 867

原创 基于Hadoop的航空公司客户数据分析与客户群体K-measn聚类分析(含LRFMC模型)

本文基于6万条航空客户数据,通过Flume+Hive构建数据处理流程,运用LRFMC模型扩展传统RFM分析维度,结合K-means聚类与可视化技术实现客户价值细分。研究创新性地将特征工程与大数据技术结合,通过小提琴图、雷达图等可视化手段揭示五类客户群体的行为特征,并提出差异化营销策略。项目实现了从数据采集、清洗到建模分析的全流程自动化,为航空业精准营销提供了数据支撑与方法参考。

2025-07-12 08:00:00 861

原创 基于Python的豆瓣图书数据分析与可视化系统【自动采集、海量数据集、多维度分析、机器学习】

摘要: 豆瓣图书数据智能分析系统通过自动化爬虫技术获取图书数据,克服了平台反爬机制,采用动态请求头、Cookies持久化、自适应休眠等策略确保采集稳定性。系统提取30余个字段信息,构建多维分析体系,包括评分、价格、评价等维度,并开发丰富可视化图表。基于机器学习模型,系统可预测图书价格,为读者、出版商和研究提供市场洞察。项目特色包括智能爬虫、全维度分析和预测应用,具有广泛的市场价值。

2025-07-11 15:35:20 1375

原创 基于Python的程序员数据分析与可视化系统的设计与实现

本文介绍了一个基于Python的程序员岗位信息分析与可视化系统,针对当前招聘平台信息碎片化、可视化不足等问题,通过爬取智联招聘数据,结合Flask框架和ECharts等技术实现数据采集、清洗、存储、分析与可视化功能。系统采用机器学习算法进行薪资预测,并设计交互式大屏展示市场趋势。尽管取得初步成果,但在数据处理和性能优化方面仍有改进空间。未来计划引入更多算法模型和深度学习技术,提升系统智能化水平。该系统为求职者、企业和教育机构提供了多维度市场洞察工具,是数据技术落地的实践案例。

2025-07-10 11:06:06 1389

原创 基于Catboost算法的茶叶数据分析及价格预测系统的设计与实现

本研究基于京东茶叶商品数据,采用Python爬虫技术(Selenium模拟登录)获取上万条14维度的商品信息,经过数据清洗与预处理后存入MySQL数据库。通过多维度可视化分析(价格分布、品牌对比、词云等)揭示市场规律,并构建CatBoost模型预测茶叶价格(R²=0.80),特征重要性显示品牌对价格影响最大。最终开发了集成Flask框架的可视化平台,支持数据分析展示与价格预测功能。项目实现了从数据采集到智能分析的全流程,为茶叶市场研究提供数据支持。

2025-07-10 10:36:37 1760

原创 基于Python的steam用户群体分析系统的设计与实现

本文介绍了一个基于Steam游戏平台数据的个性化推荐系统项目。项目通过对20万条用户游戏交互数据进行清洗、分析和可视化,运用K-Means和高斯混合模型进行用户分群,并采用LightFM隐式推荐算法实现精准游戏推荐。系统采用Python+Flask开发,提供用户画像分析、游戏推荐和丰富的数据可视化功能。项目展示了从数据处理到推荐系统实现的完整流程,为游戏平台用户行为研究和商业应用提供了实用工具。系统界面截图展示了用户分析、推荐结果和可视化图表等功能模块。

2025-07-09 09:41:25 955

原创 基于LSTM、GRU、XGBoost的比亚迪股票价格走势分析及预测模型

本研究采用LSTM、GRU和XGBoost模型对比亚迪股票价格进行预测分析。通过爬取东方财富网数据并进行预处理,构建了多维度可视化分析。实验表明LSTM表现最优(测试集RMSE=5.71,R²=0.97),GRU次之但训练效率更高,XGBoost训练最快但预测精度稍逊。研究创新性地对比了不同模型在金融时间序列预测中的表现,为模型选择提供了实证依据,同时开发了包含数据预处理、特征工程和多模型评估的完整预测框架,具有实际应用价值。

2025-07-09 09:08:41 1347

原创 基于Hadoop的智联招聘网站平台数据分析及薪资预测【数据采集、大数据分析、建模预测】

在信息化快速发展的今天,数据规模日益庞大,各个领域都能获取丰富的信息资源。招聘作为连接企业与求职者的重要环节,也产生了海量的数据,涵盖了企业的用人需求、岗位要求以及薪酬水平等核心内容。如何有效利用这些数据,为企业和求职者提供更精准、个性化的服务,成为当今社会和技术进步的重要课题。本研究正是在这样的背景下展开,具有以下几方面的重要意义。本研究对于掌握劳动力市场的动态变动具有现实价值。通过系统分析招聘数据,可以深入了解各地区、各行业岗位的分布以及薪酬水平的差异。

2025-07-08 15:40:09 1390

原创 基于hadoop的贵阳市二手房大数据分析与多种机器学习房价薪资预测【城市可换】

本研究聚焦于贵阳市二手房市场,充分利用Hadoop大数据技术开展深入的数据分析与可视化工作。首先,通过Python爬虫从链家网等房产平台系统化采集二手房数据,涵盖房源价格、面积、楼层、朝向、装修状况等多个关键属性,完成了数据的初步收集与整理。在数据预处理环节,研究对原始数据进行了清洗,包括去除重复记录、剔除明显异常值、填补缺失数据,并将数据格式转化为适合Hadoop环境存储与分析的结构化形式。随后,在Hadoop平台上搭建HDFS,实现海量数据的分布式存储,提升数据处理的效率与可扩展性。

2025-07-08 11:40:23 1143

原创 基于Hadoop的用户购物行为可视化分析系统设计与实现

本研究基于阿里天池淘宝用户行为数据,在Hadoop生态下开展电商大数据分析。通过Flume+Hive实现数据采集存储,分析PV/UV等核心指标,并利用SMOTE优化机器学习模型,对比发现MLP在用户行为预测中表现最优。结合Pyecharts可视化与Flask交互系统,实现了从数据处理到决策支持的全流程方案,为电商运营提供多维度洞察。项目创新性地融合了大数据技术与机器学习,有效解决了电商场景下的数据不平衡问题,提升了用户画像精准度。

2025-07-08 10:44:20 713

原创 Transform全流程解读——公式到原理推导,此文不断更新迭代

Transformer架构详解:从输入到输出的完整流程 本文详细解析了Transformer架构的核心原理和实现细节。Transformer通过Self-Attention机制同时获得顺序敏感性和并行效率,解决了RNN和CNN在文本处理中的局限性。文章系统介绍了输入处理、位置编码、编码器-解码器结构、多头注意力机制等关键技术点,并通过案例展示了"l love apples"到"我喜欢苹果"的翻译过程。特别讲解了残差连接、LayerNorm、Dropout等训练优化手段

2025-07-07 17:12:11 778

原创 【医疗神器】基于Hadoop的心脏病风险预测系统的设计与实现【多种机器学习对比、海量数据、大屏展示、在线交互预测】

基于Hadoop的心脏病风险预测系统设计与实现的主要研究内容分为以下几个内容。本研究设计并实现了一个基于Hadoop平台的心脏病风险智能预测系统。研究数据采用美国CDC行为风险因素监测系统(BRFSS)发布的公开数据集,包含40万份健康调查记录,涉及生理指标、行为习惯和人口特征三大类数据特征。数据预处理:包括异常值清洗、缺失值填补和特征标准化分布式存储:基于HDFS构建数据仓库自动化管道:采用Flume工具实现数据采集与传输分析环境搭建:集成Hive数据仓库和MySQL关系型数据库。

2025-07-07 09:20:57 1105

原创 基于怀庄酒官方商城的消费者购买决策影响因素研究

摘要:本研究探讨怀庄酒官方商城消费者购买决策的影响因素,通过问卷调查(422份)结合机器学习分析发现,价格接受度(100-300元为主)、物流时效性、品牌影响力及产品感官体验是核心驱动因素。随机森林模型显示决策准确率达85%,25-44岁中青年是消费主力,促销活动和电商体验显著影响购买行为。研究建议差异化定价、优化物流与品牌建设,为白酒电商转型提供策略支持。创新点在于融合传统统计与机器学习方法,揭示多维度行为特征。

2025-07-07 08:00:00 756

原创 基于ARIMA、LSTM、GRU等神经网络模型对城市空气质量(AQI)预测分析及聚类研究

本研究基于2017-2025年空气质量监测数据,结合Python对某市空气质量进行时空分析与预测。通过可视化分析发现空气质量呈现季节性差异,夏季优于冬季,沿海地区优于内陆。采用层次聚类将空气质量分为两类,识别出春夏季污染较轻、秋冬季较重的特征。运用ARIMA(3,1,1)模型进行预测,显示未来AQI指数将稳定在51-52之间。研究还尝试使用LSTM等深度学习模型,为环境管理提供数据支持。成果有助于掌握空气质量变化规律,为环保决策提供科学依据,同时提升公众环保意识。

2025-07-06 09:00:00 968

原创 SMOTE、orderline-SMOTE、ADASYN(自适应过采样)在支持向量机与LightGBM的自动分类算法应用

摘要 本研究探讨了支持向量机在数据自动分类中的应用,重点分析了小样本和大规模不平衡数据场景下的优化策略。针对威斯康星乳腺癌数据集(30个特征),采用特征选择与参数调优方法,将分类准确率提升至97.8%;在电信诈骗检测(20万条记录)中,对比SMOTE与ADASYN采样效果,结合LightGBM模型实现99.83%的准确率。实验表明:SVM在小样本医疗数据中表现优异(AUC 0.994),而LightGBM更适合海量数据处理。研究提出了基于数据规模与业务需求选择分类模型的实践指导,为数据驱动决策提供了技术参考

2025-07-06 08:00:00 673

原创 基于Hadoop的国内手机销量大数据分析可视化系统的设计与实现【百万数据集+调度配送时长算法预测】

本项目基于京东平台2023年11月的百万级手机销售数据,利用Hadoop生态系统进行大数据分析。通过Flume实现数据高效导入Hive数据仓库,采用分桶技术优化存储与查询。研究构建了多维度分析模型,使用Pyecharts进行可视化展示,并基于LightGBM算法建立物流配送时长预测模型,优化后模型R²达0.81,MAE为0.38天。特征分析显示优惠幅度和时间因素对配送效率影响显著。系统整合了数据处理、分析与可视化全流程,为电商销售和物流决策提供数据支持。

2025-07-04 11:04:09 1044

原创 基于Hadoop的公共自行车数据分布式存储和计算平台的设计与实现

本项目设计并实现了一个基于Hadoop生态的公共自行车数据分布式存储与计算平台。针对共享单车行业PB级数据的存储和分析需求,系统采用HDFS进行分布式存储,Hive进行数据仓库管理,结合Flume实现实时数据采集,并通过Sqoop实现Hadoop与MySQL的数据互通。研究重点包括数据清洗、结构化处理和多维分析,优化了Hive查询性能,并使用Pyecharts实现可视化展示。该平台为共享单车企业提供了高效的大数据处理方案,助力智慧城市建设和绿色出行发展。

2025-07-04 09:57:48 1439 1

SEIR(SIR)新冠肺炎预测分析源码

博客案例:https://blog.csdn.net/weixin_47723732 截止 2021 年 4 月 27 日, 全球新增确诊病例连续 9 周增加,新增死亡病例连续 6 周增加。 世卫组织总干事谭德塞指出,虽然一些地区的新增确诊病例和死亡人数出现小幅下降,但许多国家疫情仍在密集传播,印度等国的情况尤其令人揪心。 中国政府已决定在全国进行全人群的新冠病毒疫苗接种,以建立最大规模的国民群体新冠免疫屏障。 请你们根据现有的知识和搜集相关数据,利用数学建模的方法,解决如下问题: 1. 建立传染病毒群体免疫屏障的数学模型,说明疫苗接种率的控制对构筑免疫屏障的作用。在此基础上考虑疫苗的有效性问题和病毒的变异问题对免疫屏障的可能影响。讨论免疫屏障和物理隔离对于整个社会的代价及收益的异同。 2. 以中国为例,考虑采取怎样的步骤、需要多大成本、多长时间可完成群体免疫屏障的建立。 3. 试分析导致印度新冠疫情急剧恶化的原因,给出印度疫情对周边国家疫情影响的预测分析和防控建议。 4. 根据你所建立的免疫屏障模型,提出能够有效遏制印度疫情蔓延的方案,并预测实施方案后印度疫情的走向 源码及分析

2022-04-05

基于Word2Vec向量化的新闻分本分类.ipynb

基于Word2Vec向量化的新闻分本分类.ipynb

2022-05-22

智能词云算法(一键化展示不同类型的词云图)运行生成HTML文件

点击运行提示用户输入文本路径:注意路径是txt文件的路径,所以如果是Word的,首先需要将其放在TXT文件中。 其次运行之后,会弹出一个功能选项卡,你可以根据选项来生成自己的词云,智能词云程序,小白也可以使用,不需要任何的编程基础!

2022-05-22

协同过滤推荐系统资源(基于用户-物品-Surprise)等案例操作代码及讲解

如果毕业设计做推荐系统可以参考这个资源!!!!!!!!! 资源包括: 1、包含基于物品,基于用户的协同过滤底层算法(Python实现) 2、基于python第三库Surprise实现的推荐系统(机器学习类似原理) 3、基于电影进行推荐系统的设计 4、包含大量的数据集(电影数据集)

2022-05-11

Python机器学习关联规则资源(apriori算法、fpgrowth算法)原理讲解

1、包含apriori算法的代码操作和讲解以及原理的文档PPT 2、包含fpgrowth算法的代码操作和讲解以及原理的文档PPT 3、关联规则的PPT 4、通过这些可以理解到关联规则的运用实际代码 5、值得推荐! 6、下载中之后有问题可以私信博主!!!(必回)

2022-05-11

旅游消费数据集——包含用户id,用户评分、产品类别、产品名称等指标,可以作为推荐系统的数据集案例

旅游消费数据集——包含用户id,用户评分、产品类别、产品名称等指标,可以作为推荐系统的数据集案例

2022-05-11

机器学习-推荐系统(基于物品).ipynb

基于用于的推荐系统代码,直接可以运行,只需要替换掉你的数据即可! 如果有需要做推荐系统案例的小伙伴,可以私信博主,留言即可! 第一步:发现用户的偏好 第二步:找到相似的用户或物品 第三步:计算推荐

2022-05-11

机器学习-推荐系统(基于用户).ipynb

机器学习-推荐系统(基于用户).ipynb

2022-05-11

pyecharts绘图案例模板大全(代码可作为模板)

1、包含53类图表项目,几百种pyecharts可视化模板 2、直接可以运行HTML即可展示画面,也可以直接在网页上修改数据 3、有问题可以私信博主 4、另外100种大屏可视化模板可以私信博主,前端展示,可以修改数据即可! 5、参考专栏:https://blog.csdn.net/weixin_47723732/category_10599682.html 让数据变得灵动炫酷起来,给数据赋予灵魂和价值,从可视化切入,介绍pyecharts、matplotlib、echarts、R语言绘图,Excel绘图等其他绘图,包含专业标准以及企业报表,让可视化不在单一乏味!

2022-05-09

基于hadoop对某网站日志分析部署实践课程设计报告参考模板.doc

基于Hadoop部署实践对网站日志分析 1. 项目概述 本次要实践的数据日志来源于国内某技术学习论坛,该论坛由某培训机构主办,汇聚了众多技术学习者,每天都有人发帖、回帖。至此,我们通过Python网络爬虫手段进行数据抓取,将我们网站数据(2013-05-30,2013-05-31)保存为两个日志文件,由于文件大小超出我们一般的分析工具处理的范围,故借助Hadoop来完成本次的实践。 2. 总体设计 2.1 Hadoop插件安装及部署 第一步:Hadoop环境部署和源数据准备 安装好VMware(查看) 第二步:使用python开发的mapper reducer进行数据处理。 第三步:创建hive数据库,将处理的数据导入hive数据库 第四步:将分析数据导入mysql 3. 详细实现步骤操作纪要 3.1 hadoop环境准备 首先开启Hadoop集群:start-all.sh:开启所有的Hadoop所有进程,在主节点上进行 NameNode它是Hadoop 中的主服务器,管理文件系统名称空间和对集群中存储的文件的访问。 Secondary NameNode.....

2022-05-09

hadoop实践项目-PPT演示步骤

实践的数据日志来源于国内某技术学习论坛,该论坛由某培训机构主办,汇聚了众多技术学习者,每天都有人发帖、回帖。至此,我们通过Python网络手段进行数据抓取,将我们网站数据(2013-05-30,2013-05-31)保存为两个日志文件,由于文件大小超出我们一般的分析工具处理的范围,故借助Hadoop来完成本次的实践。

2022-05-09

大数据分析-网站日志数据文件(Hadoop部署分析资料)

本次要实践的数据日志来源于国内某技术学习论坛,该论坛由某培训机构主办,汇聚了众多技术学习者,每天都有人发帖、回帖。至此,我们通过Python网络爬虫手段进行数据抓取,将我们网站数据(2013-05-30,2013-05-31)保存为两个日志文件,由于文件大小超出我们一般的分析工具处理的范围,故借助Hadoop来完成本次的实践。 使用python对原始数据进行清洗,以便后续进行统计分析; 使用Hive对清洗后的数据进行统计分析; 使用Sqoop把Hive产生的统计结果导出到mysql中; 两个日志文件,一共有200MB,符合大数据量级,可以作为推荐系统数据集和hadoop测试集。

2022-05-09

Hadoop网站日志分析源码(hive命令).txt

Hadoop网站日志分析源码(hive命令).txt

2022-05-09

Hadoop部署实践所需的安装包(Ubuntu下的安装包)

1、apache-hive-2.3.5-bin.tar.gz 2、hadoop-2.7.3.tar.gz 3、jdk-8u162-linux-x64.tar.gz 4、mysql-connector-java-5.1.24.tar.gz 5、sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz

2022-05-09

hive安装资料手册.rar

hive安装资料手册.rar

2022-05-09

hadoop实训课数据清洗py脚本(MapReduce python代码,可执行文件脚本,使用方法)

可以作为大数据预处理的MapReduce代码的参考!!! -执行脚本文件: cd /home/hadoop/logfiles/ source format_run_2013_o5_30.sh source format_run_2013_o5_31.sh 执行我们的脚本文件,可以用source或者./

2022-05-09

使用hadoop-streaming运行Python编写的MapReduce程序.rar

使用hadoop-streaming运行Python编写的MapReduce程序.rar

2022-05-09

Python原生词云(自定义各类参数)

运行根据提示输入文本路径和背景图路径。颜色,停用词,大小,词频等多个参数

2022-04-18

Python编写成绩计算系统

利用Python语言编写成绩管理系统,具体解释参考博主文章: https://blog.csdn.net/weixin_47723732/article/details/107946288

2022-04-07

数学建模论文万能模板(适用于大学生各类建模类竞赛论文参考)

格式排版已经完善,曾有小伙伴用此模板加上自己的建模功底,获得省部级一等奖数学建模! 改模板包含数学建模相关论文必要的流程和解题步骤,并且Word内有批注,对每一个板块应该如何书写,如何注意论文的一些格式,以及参考案例等! 以及按照标准论文排版OK了,建议写作的时候直接按照这个模板进行内容的填充,并且将相关术语进行整合! 例如: 简单的描述一下问题求解的大体思路,首段简明扼要,言简意赅。例如本文基于如何的问题背景,进行如何的建模,有怎样的经济实用效果,得出如何的策略等。主要是简短背景加实际效应的结合 针对问题一,此处描述对于问题一要求解进行大致的思路,利用了什么样的方法,有什么样的思路想法,最终通过怎么样的模型算法进行问题的建模,所得出的直接效果,例如一些模型的准确度和参数,可以加入说明。最终通过该求解方法,能够达到如何的效果,把问题求解实际化。这里该给出的加粗,需要加粗。 针对问题二,同样的效果描述和步骤,这里唯一需要注意的就是,如果问题是层层递进,就需要说明基于问题一所求解的结果,应用到问题二当中。 针对问题三,具体的过程如上,这里不光是对本问题的描述,可以适当.......

2022-04-07

YOLO格式肺炎数据图像(已标注)

YOLO格式肺炎数据图像(已标注) 内容: 肺炎医学影像(如X光) + YOLO格式标注文件。 标注信息: 病灶的边界框位置(x_center, y_center, width, height)和类别(肺炎)。 核心价值: 直接用于训练YOLO系列目标检测模型,实现肺炎病灶的自动识别。 用途: 医疗影像AI(尤其是肺炎辅助诊断)的模型开发与训练。 注意点: 数据来源和授权需确认。

2025-06-05

药品销售数据集.rar

药品销售数据集.rar

2025-03-05

美妆用户行为数据集脱敏

user_id item_id behavior_type item_category date hour user_geohash 用户ID;商品ID;用户行为标签(1:浏览,2:收藏,3:加购物车,4:购买);商品类别ID;日期;时间;用户所在省份 注:本数据集为2023年双十一、双十二期间的部分美妆店铺用户行为数据集,由于涉及到用户的个人信息及商品的名称,故对用户ID及商品信息做了脱敏处理。该数据集可以用于大数据分析研究及隐式推荐系统的实现,作为大数据的研究性的数据集。

2025-02-10

酒店客户流失预测模型的研究与应用数据集

本项目数据来源于携程用户一周的访问数据,为保护客户隐私,已经将数据经过了脱敏,和实际商品的订单量、浏览量、转化率等有一些差距,不影响问题的可解性

2024-11-27

Hadoop豆瓣电影数据分析(Hadoop)操作源码

Hadoop豆瓣电影数据分析(Hadoop)操作源码

2022-06-16

研究生数学建模华为杯C题第一问含结果csv表格.rar

交叉分发的目的:保证每个作品都被不同的评审专家评审,且这些评审专家之间有足够的交集,以确保评审的可比性。 评审负载均衡:每位评审专家都应有大致相同数量的作品进行评审。 交叉的最大化:确保每份作品都被不同的评审专家评审,并且尽可能多的作品之间有交集。 交叉的均匀分布:确保交集在所有评审专家之间均匀分布,以提高可比性。 问题一 在每个评审阶段,作品通常都是随机分发的,每份作品需要多位评委独立评审。为了增加不同评审专家所给成绩之间的可比性,不同专家评审的作品集合之间应有一些交集。但有的交集大了,则必然有交集小了,则可比性变弱。请针对3000支参赛队和125位评审专家,每份作品由5位专家评审的情况,建立数学模型确定最优的“交叉分发”方案,并讨论该方案的有关指标(自己定义)和实施细节。 结果: ,Reviewer_1,Reviewer_2,Reviewer_3,Reviewer_4,Reviewer_5 Work_1,5,18,24,32,99 Work_2,42,45,57,62,105 Work_3,6,67,74,87,96 Work_4,3,7,46,65,82 Work_5

2023-09-22

2023年华为杯题目.rar

2023年华为杯题目.rar

2023-09-22

【案例+操作+演示】20分钟带你入门Pandas,掌握数据分析科学模块,附带上百个案例练习题含答案

Pandas练习题目录 1.Getting and knowing - Chipotle - Occupation - World Food Facts 2.Filtering and Sorting - Chipotle - Euro12 - Fictional Army 3.Grouping - Alcohol Consumption - Occupation - Regiment 4.Apply - Students - Alcohol Consumption - US_Crime_Rates 5.Merge - Auto_MPG - Fictitious Names - House Market 6.Stats - US_Baby_Names - Wind_Stats 7.Visualization - Chipotle - Titanic Disaster - Scores - Online Retail - Tips 8.Creating Series an

2023-09-14

【多思路附源码】2023高教社杯 国赛数学建模C题思路 - 蔬菜类商品的自动定价与补货决策

【多思路附源码】2023高教社杯 国赛数学建模C题思路 - 蔬菜类商品的自动定价与补货决策

2023-09-08

豆瓣电影数据集【案例数据5000条】私信博主获取代码不限量获取数据

movie_id,movie_name,director,yanyuanData,juqing,country,language,push_time,movie_long,pingfen,pingjiarenshu,conver_img,describe 26671361,喜丧,张涛,"['郁凤云', '王士兰', '李宝明', '阮凤鸣']",剧情, 中国大陆 , 汉语普通话,2015-12-05(青年导演海上影展),108分钟,8.8,28475,https://img1.doubanio.com/view/photo/s_ratio_poster/public/p2361586020.jpg,鲁南张庄,86岁老人林郭氏,身体硬朗,在农村老宅独自生活。林郭氏突发脑血栓,身体状况逐渐恶化。子女积极为老人操作敬老院入住事宜。敬老院床位紧张,只有等待敬老院有老人去世,按照老人的意愿,开始了到子女家轮流居住的短暂旅程。这一过程中,林郭氏中风摔倒,脑神经损伤,得了笑病。敬老院终于有老人亡故,空出床位。却在去敬老院的前夕,林郭氏怀揣着全家福老照片溘然长逝。按照老风俗,儿孙们给她办了一场轰轰烈烈

2023-09-05

Prescan相关资料文档及安装教程和配套包

Prescan相关资料文档及安装教程和配套包

2023-05-14

全分布式集群Hadoop全套组件解压即可使用包含(Ubuntu-HDFS-HBASE-HIve-Sqoop-mysql....)

1.集群配置,包含三个结点,主节点控制所有的子节点 2.集群已经搭建好了,解压之后直接可以使用Finalshell和VMware连接 3.包含全套组件:hdfs,hbase,hive,sqoop,mysql,pig,spark等大数据组件 4.如果不知道如何使用,或者需要做Hadoop项目可以私信博主

2023-03-06

超方便深度学习Pytorch框架环境部署包

解压之后直接激活使用,不需要自己配置深度学习环境【超便捷】

2022-12-05

目标检测 智能交通 国内交通标志数据集 - 标注完成 - 1W张数据实拍交通标志

1.实拍交通标志已标注数据集1万张——内含txt版本。 2.本数据集含有45类标志,有关联ID。 3.数据集适合yolo系统算法使用,内部已经把txt信息都转换好了,看个人需求使用。 4.数据集多为实拍,精度够,并且本人亲自训练过后,检测精度可以达到98%(50轮)。 有需要指导可私信博主;包含深度学习框架和训练好的文件分享 采集的真实场景的数据,标注后可以用于交通标志物检测 手工标注范围良好,适合高精度目标识别 可以直接用于YOLO系列的交通灯目标检测检测;数据场景丰富

2022-12-05

机器学习配套资源.rar

机器学习配套资源.rar

2022-08-24

Hadoop电影数据集,包含字段说明

Hadoop电影数据集,包含字段说明

2022-06-17

基于Hadoop豆瓣电影数据分析实验报告

豆瓣用户每天都在对“看过”的电影进行“很差”到“力荐”的评价,豆瓣根据每部影片看过的人数以及该影片所得的评价等综合数据,通过算法分析产生豆瓣电影 Top 250。 为了分析电影产业的发展趋势,本次实验需要对这些信息做统计分析。 注意:豆瓣网站的数据形式为文本文件(必须将导入到hive中做处理)。也可以为CSV文件,例如下图: 针对本次实验,我们需要用到Hadoop集群作为模拟大数据的分析软件,集群环境必须要包括,hdfs,hbase,hive,flume,sqoop等插件,最后结合分析出来的数据进行可视化展示,需要用到Python(爬取数据集,可视化展示)或者echarts等可视化工具。

2022-06-16

Hadoop豆瓣电影分析可视化源码

针对本次实验,我们需要用到Hadoop集群作为模拟大数据的分析软件,集群环境必须要包括,hdfs,hbase,hive,flume,sqoop等插件,最后结合分析出来的数据进行可视化展示,需要用到Python(爬取数据集,可视化展示)或者echarts等可视化工具。 豆瓣用户每天都在对“看过”的电影进行“很差”到“力荐”的评价,豆瓣根据每部影片看过的人数以及该影片所得的评价等综合数据,通过算法分析产生豆瓣电影 Top 250。 为了分析电影产业的发展趋势,本次实验需要对这些信息做统计分析。 注意:豆瓣网站的数据形式为文本文件(必须将导入到hive中做处理)。也可以为CSV文件,例如下图:

2022-06-16

自然语言处理之文本分类及文本情感分析资源大全(含代码及其数据,可用于毕设参考!)

包含自然语言处理下的文本分词、构建词向量、以及文本分类;主题分类;情感分析模型代码,可以作为毕业设计参考代码,你可以阅读作者的代码案例,将其换成自己的数据进行构架,如此可以进一步的增强代码的逻辑性! 值得下载!整理和测试不易! 包含多种模型案例 文章专栏代表: 机器学习之自然语言处理——中文分词jieba库详解(代码+原理) https://blog.csdn.net/weixin_47723732/article/details/124907474?spm=1001.2014.3001.5501

2022-05-23

基于Word2Vec构建多种主题分类模型(贝叶斯、KNN、随机森林、决策树、支持向量机、SGD、逻辑回归、XGBoost...)

基于Word2Vec构建多种主题分类模型: 贝叶斯、KNN、随机森林、决策树、支持向量机、SGD、逻辑回归、XGBoost、lightgbm,通过网格搜索进行参数优化,最终迭代出每个模型的最佳参数和准确率,最终返回一个最佳模型。 利用测试数据进行测试,分类模型的效果如何! 1. 有监督学习:读取文本内容(->X)和文本分类标签(->y) 2. 文本内容 -> 分词 (用户字典,停用词) -> 空格连接的字符串 或者 词列表 3. 特征提取/向量化 -> X - 空格连接的字符串 -> CountVectorizer,TfidfVectorizer - 词列表 -> Word2Vec,Doc2Vec 4. 分类标签编码 -> LabelEncoder 5. 构建训练集测试集 6. 构建模型 7. 训练模型 8. 调参和评估 9. 模型的应用

2022-05-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除