detector2导入语义分割数据集

1.调整数据集文件目录

参考ADEChallengeData2016数据集的目录结构

	ADEChallengeData2016
			annotation
					training(存放所有训练标签png图片)
					validation(存放所有验证标签png图片)
			images
					training(存放所有训练jpg图片)
					validation(存放所有验证jpg图片)
	有这些足够,其余不重要
	注:图片和标签明明方式需对应

2. 生成detector2专用的数据集标签格式

下载安装detector2库,使用./detectron2/datasets/prepare_ade20k_sem_seg.py即可完成。
该代码会先找寻环境变量DETECTRON2_DATASETS作为数据集根目录,若找不到默认路径./datasets。个人建议,可以更改datasets为自己数据集存储路径,或者在数据集存储路径和datasets建立一个软链接。后面ADEChallengeData2016为数据集名,可根据自己数据集修改,其余部分均不用修改。

至此,数据集准备完毕。

3. 导入数据集

此过程均在detectron2/detectron2/data/datasets目录下完成

接下来以gid数据集为例
(1)在builtin_meta.py文件中,添加如下内容,位置不限:

GID_SEM_SEG_CATEGORIES = ["building", "field", "forest", "grassland", "water"]

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值