“泰迪杯”挑战赛 - 通过数据挖掘技术实现道路缺陷自动识别

本文探讨了如何利用数据挖掘技术,尤其是BP神经网络,结合图像处理方法,实现道路缺陷(如裂缝、网裂、坑槽等)的自动识别。通过预处理、图像分割、特征提取等步骤,提出了一种随机游动分割算法,有效识别路面破损。实验结果显示,该方法具有高识别准确率和效率,为道路养护提供了科学依据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目 录

  1. 挖掘目标
  2. 分析方法与过程
    2.1. 总体流程
    2.2. 具体步骤
    2.2.1 缺陷图像预处理
    2.2.2 缺陷图像分割
    2.2.3 缺陷图像特征提取
    2.2.4 BP 神经网络模式识别
    2.3. 结果分析
  3. 结论
  4. 参考文献
  5. 附 录

1. 挖掘目标

本次建模目标是利用附件所提供的道路缺陷图像,主要类型有:裂缝,龟裂,网裂,坑槽等缺陷。首先结合图形图像处理技术,对各类型图像进行特征提取和参数计算,并采用数据挖掘技术进行模式识别,以实现不同道路缺陷类别的自动识别。随着数字图像处理和模式识别技术的快速发展,不少研究人员开始试图利用图像识别技术来实现道路缺陷数据的调查研究。基于数字图像处理的道路路面病害自动识别技术可以及时掌握路面的破损情况,为路面的及时养护赢得时间的同时,也为养护资料的积累提供了方便,也充实了自动识别系统的数据库数据,从而为进一步制定道路养护规划决策提供科学依据。

2. 分析方法与过程

2.1. 总体流程

本次建模主要包括 3 个模块,分别是数据库查询模块、图像处理模块、参数计算模块。其中数据库查询模块主要实现从前端数据库读取缺陷图像,以及图像处理完成并且参数提取以后的参数统计等功能;图像处理模块主要实现图像灰度变换、图像去噪、图像分割等功能;参数计算模块主要实现对缺陷图像类型的判断,以及对线性裂缝长度的计算和网状裂缝的面积计算等功能,具体实现过程如图 1 所示。

在这里插入图片描述
步骤一:利用 MATLAB 图形图像处理工具箱进行图像读取;
步骤二:编程进行图像处理模块的实现;
步骤三:对缺陷图像判断标准的参数进行计算并输出。
挖掘模型的具体流程如图 2 所示。

在这里插入图片描述

2.2. 具体步骤

2.2.1 缺陷图像预处理

(1) 灰度变换
图像在形成、传输和记录的过程中,会由于成像系统、传输媒介和记录设备的不完善,使图像质量下降,形成退化图像,造成比较差的视觉效果和计算机处理上的困难。影响图像质量下降的因素包括成像系统和环境以及成像特点等,因此很难用一个显式的数学表达式来表征。

我们假设道路图像 I(x,y)I(x,y)I(x,y) 由非均匀灰度(光照)的背景Ib(x,y)I_b(x,y)Ib(x,y), 裂缝病害In(x,y)I_n(x,y)In(x,y)
及石子、沥青等构成的噪声Ic(x,y)I_c(x,y)Ic(x,y)三部分相加组成,即
I(x,y)=Ib(x,y)+In(x,y)+Ic(x,y)I(x,y)= I_b(x,y)+ I_n(x,y)+ I_c(x,y)I(x,y)=Ib(x,y)+In(x,y)+Ic(x,y)

因此,如果可以找出背景信号,用原始图像减去背景就可以纠正灰度不均这一问题。从以上分析可以看出,关键在于背景图像的提取。在实际应用中,我们很难直接得到没有裂缝的背景,有时即使能得到,在时间轴上面的位置相距比较大,光照分布也往往不均匀。

经分析,我们考虑对背景子集双线性插值的方法来抽取拟合背景,算法步骤为:

Step 1 由原图像求取背景子集。对原图像分块,每块取一个背景点。光照不均在整幅图像表现明显,但在局部可以认为是近似均匀的。

Step 2 由子集做插值得到背景图像。由于图像的灰度变化是一个渐变的过程,考 虑利用双线性插值来对四个相邻的像素进行插值,因为这样产生的表面是连续的。
在这里插入图片描述
在这里插入图片描述
(2) 图像去噪

中值滤波是一种非线性处理技术,能抑制图像中的噪声,由于它在实际运算过程中并不需要图像的统计特性,所以使用比较方便。它是基于图像的这样一种特性:噪声往 往以孤立的点的形式出现,这些点对应的像素数很少,而图像则是由像素数较多、面积较大的小块构成。

中值滤波法虽然可以很好的去除图像中的孤立的噪声点,但是在抑制噪声的同时,也会对图像的边缘及细节有比较大的损害,使图像的边沿及细节变模糊。基于此,在本次挖掘建模中,提出一种梯度倒数加权平均滤波算法。

在一帧离散图像中,图像在一个区域内的灰度变化要比在区域之间的变化小,在边 缘处的梯度绝对值要比在区域内部的梯度绝对值高。在一个n×nn \times nn×n 的窗口内,若把中心像素点与其各邻点之间的梯度绝对值的倒数定义为各邻点的加权值,则在区域内部的邻点,加权值最大;而在一条边缘附近的和位于区域外的邻点,加权值最小。这样对加权后的邻域进行局部平均,可使图像得到平滑,又不至于使边缘和细节明显模糊。为使平 滑后像素的灰度值在原图像的灰度范围内,应采用归一化的梯度倒数作为加权系数。具体实现算法如下:

设点( x, y) 的灰度值为 f( x, y) , n = 3。在它的3×3 的邻域内,定义梯度倒数为
g(x,y;i,j)=1∣f(f(x+i,y+i)−f(x,y))∣g(x,y;i,j)=\frac{1}{|f(f(x+i,y+i)-f(x,y))|}g(x,y;i,j)=f(f(x+i,y+i)f(x,y))1

这里 i, j = -1,0,1,但 i 和 j 不能同时为 0 。计算(x,y)八个邻点的 g( x, y;i ,j ) 值,若 f(x+i,y+1)=f(x,y),梯度为0 ,则定义 g( x,y; i,j ) 的范围在[0,2]之间,定义一个归一化的权重矩阵W 作为平滑的模板。其中,

在这里插入图片描述

规定中心元素 w(x,y ) ,其余八个加权元素之和为0.5,使得个元素总和等于1。于是有:
w(x+i,y+i)=12+g(x,y,i,j)∑i∑jg(x,y,i,j)w(x+i,y+i)= \frac{1}{2}+ \frac{g(x,y,i,j)}{\sum_{i} \sum_{j} g(x,y,i,j)}w(x+i,y+i)=21+ijg(x,y,i,j)g(x,y,i,j)

其中,i ,j=-1,0,1 ,但i 和 j 不能同时为0 。

在这里插入图片描述

从图中可以看出,算法对图像噪声的滤除有一定效果,平滑了背景中的部分噪声, 一些细小的噪声已经被去除,大的噪声也有一定的减弱,并且保留了裂缝的边缘信息,在一定程度上有较好效果,尤其对裂缝和背景差别较大的图像效果会更明显。

(3) 图像增强

直方图是多种空间域处理技术的基础。直方图操作能够有效地应用于图像增强。灰度直方图的模型化处理,是指将图像的灰度值按照规定的灰度分布进行变换处理。这种变换方法适用于图像对比度较差、过于明亮或者过于黑暗,以及图像的灰度分布集中在明、暗两端的情况。直方图均衡化是其中一种非常有效的方法。也就是说,变换后的图像灰度值的分布是均匀的,所以图像的整体对比度得到了改善。应用数学公式来描述直方图均衡化如下:

g(x,y)=INT(v(u)−vmin1=vmin(L−1))g(x,y)=INT (\frac{v(u)-v_{min}}{1=v_{min}}(L-1))g(x,y)=INT(1=vminv(u)vmin(L1))

其中, g( x, y) 为变换后图像的灰度值,u 为变换前图像的灰度值,v为灰度分布频度,vminv_{min}vmin 为灰度分布频度的最小值, INT 为取整。对图像严重裂缝 01.jpg,分别给出路面的原始直方图和均衡化后的直方图。

在这里插入图片描述
在这里插入图片描述
从均衡后之后裂缝图像的直方图可以看出,直方图的动态范围变大了,但与原始图
像直方图的“单峰”特性相比,直方图均衡化之后的图像的直方图的“单峰”特性不是
很明显。这是因为,图像的边缘在成像过程中曝光不均匀,造成图像增强以后直方图变
得有些“混乱”。

2.2.2 缺陷图像分割

(1) 边缘检测

图像边缘对图像识别和计算机分析十分有用。边缘能够勾划出目标物体,使观察者一目了然;边缘蕴含了丰富的内在信息,是图像识别中重要的图像特征之一。从本质上,图像边缘是图像局部特性不连续的反映,它标志着一个区域的终结和另一个区域的开始。

由于路面裂缝灰度变化更大,可以采用边缘检测的方法,对路面裂缝进行识别。对于路面裂缝检测来说,边缘检测算法在很大程度上影响着识别和检测的效果与精度。最简单的边缘检测方法是对原始图像按像素的某领域构造边缘检测算子。目前,提取边缘常用的方法主要包括:模版匹配法、曲面拟合法、边缘算子法等。

边缘检测的实质是采用某种算法来提取出图像中对象与背景间的交界线。我们将边缘定义为图像中灰度发生急剧变化的区域边界。图像灰度的变化情况可以用图像灰度分布的梯度来反映,因此我们可以用局部图像微分技术来获得边缘检测算子。经典的边缘检测方法,是对原始图像中像素的某小邻域来构造边缘检测算子。

若记,▽f(x,y)=δfδxi+δfδyj\bigtriangledown f(x,y)=\frac{\delta f}{\delta x}i+\frac{\delta f}{\delta y}jf(x,y)=δxδfi+δyδfj为图像的梯度,δf(x,y)\delta f(x,y)δf(x,y) 包含灰度变化信息,设e(x,y)+fx2+fy2e(x,y)+\sqrt{f_x ^2 + f_y ^2}e(x,y)+fx2+fy2 f(x,y)f(x,y)f(x,y)的梯度,e (x, y) 可以用作边缘检测算子。为了简化计算,也可以将 e( x,y ) 定义为偏导数 fxf_xfxfyf_yfy 的绝对值之和:

e(x,y)+∣fx(x,y)∣+∣fy(x,y)∣e(x,y)+|f_x(x,y)|+|f_y(x,y)|e(x,y)+fx(x,y)+fy(x,y)

以这些理论为依据,提出了许多算法,常用的边缘检测方法有: Roberts 边缘检测算子、Sobel 边缘检测算子、Prewitt 边缘检测算子、Canny 边缘检测算子、Laplace边缘检测算子等。

在这里插入图片描述

从图中可以看出,Roberts算子提取边缘的结果边缘较粗,边缘定位不很准确,Sobel算子和Prewitt 算子对边缘的定位就准确了一些,而采用拉普拉斯高斯算子进行边缘提取的结果要明显优于前三种算子,特别是边缘比较完整,位置比较准确。相比而言,Canny算子提取的边缘最为完整,而且边缘的连续性很好,效果优于以上其他算子,这主要是因为它进行了“非极大值抑制”和形态学连接操作的结果。

上面几种基于微分的经典边缘提取算子,它们共同的优点是计算简单、速度较快,缺点是对噪声的干扰都比较敏感。在实际应用中,由于图像噪声的影响,总要将经典的 算法进行改善结合其他一些算法对一幅含噪声的图像进行处理,然后再采用经典的边缘提取算子提取图像边缘。

(2) 阈值分割
图像灰度直方图的形状是多变的,有双峰但无明显低谷或者是双峰与低谷都不明显,而且两个区域的面积比也难以确定的情况经常出现,采用最大方差自动取阈法往往能够得到较满意的结果。

在这里插入图片描述

图 10 (a)为包含有两类区域的图像的灰度直方图,设t 为分离两个区域的阈值。由直方图经过统计可以得到被t 分离后的区域 A 、区域 B 占整个图像的面积比以及整幅图像、区域 A、区域 B 的平均灰度为

区域A面积比 δ1=∑j=0tnjn区域 A面积比\ \delta_1=\sum_{j=0}^{t} \frac{n_j}{n}A δ

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱学习的数据喵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值