利用 OpenAI API 进行文本聚类和标记

本文介绍了如何利用OpenAI API和LangChain框架进行文本聚类和标记。首先,通过OpenAI API获取文本嵌入,然后使用K-means进行聚类,借助t-SNE进行可视化。接着,通过LLM和LangChain为聚类生成标签,总结评论以理解每个集群的特点。最后,讨论了不同聚类方法的选择和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

每日推荐一篇专注于解决实际问题的外文,精准翻译并深入解读其要点,助力读者培养实际问题解决和代码动手的能力。

欢迎关注公众号

原文标题:Text Clustering and Labeling Utilizing OpenAI API

原文地址:https://medium.com/@kbdhunga/text-clustering-and-labeling-utilizing-openai-api-677271e0763c

Github:https://github.com/DhunganaKB/OpenAI-App/blob/main/Notebooks/clustering_labelling_amazon_reviews.ipynb


利用 OpenAI API 进行文本聚类和标记

由于大型语言模型(LLM)的出现,对开放式文本进行聚类变得异常简单。LLM 在聚类方面的主要优势在于文本嵌入,其产生的高维向量能有效捕捉语义相似性,从而使其有别于传统方法。在各种自然语言处理(NLP)任务中,这些向量嵌入具有重要意义,可作为模型的关键输入,并对其结果产生重大影响。Prompt 工程与 LLMs 和

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hj_caas

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值