第八课:大白话教你逻辑回归

这节课咱们来聊聊 逻辑回归(Logistic Regression),别看名字里有“回归”,它其实是用来干 分类 的活儿的!我会用最接地气的方式,从定义讲到实战,保证你笑着学会,还能拿去忽悠朋友!
在这里插入图片描述

一:逻辑回归是啥?——当回归想不开,转行搞分类

1.1 定义:逻辑回归是个“概率算命先生”

问题:你想预测一个人会不会买你的产品(买 or 不买?),或者一封邮件是不是垃圾邮件(垃圾 or 正常?)。

线性回归的尴尬

  • 线性回归预测的是连续值(比如房价 500 万、600 万)。
  • 但分类问题要的是 概率(比如“买”的概率是 80%,“不买”是 20%)。

逻辑回归的解决方案

  • 它用了一个 Sigmoid 函数(也叫“S 曲线”),把线性回归的输出(可以是任意实数)压缩到 0~1 之间,变成概率。
  • 公式:
    [
    P(y=1) = \frac{1}{1 + e^{-(wX + b)}}
    ]
    其中:
    • ( wX + b ) 是线性回归的输出(比如 5、-3、0.7 啥的)。
    • Sigmoid 把它变成 0~1 的概率(比如 0.8 就是 80% 可能买)。

🤖 举个栗子
你问逻辑回归:“这封邮件是垃圾邮件吗?”
它掐指一算:“嗯,Sigmoid 输出 0.9,90% 可能是垃圾,扔了吧!”

在这里插入图片描述

二:实战!用逻辑回归过滤垃圾邮件

2.1 数据准备

假设我们有一些邮件数据,包含:

  • 特征
    • 是否包含“免费”(1 or 0)
    • 是否包含“点击”(1 or 0)
    • 发件人是否陌生(1 or 0)
  • 标签:1(垃圾邮件) or 0(正常邮件)
邮件 包含“免费” 包含“点击” 陌生发件人 垃圾邮件?
1 1 1 1 1
2 0 0 0 0
3 1 0 1 1

2.2 训练逻辑回归模型

from sklearn.linear_model import LogisticRegression

X = [[1, 1, 1], <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

顽强卖力

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值