Spark调优(工作实战经验)

1.资源调优:
    写完了一个复杂的spark作业之后,进行性能调优的时候,首先第一步,
    就是要来调节最优的资源配置。
    1.1分配资源:
        executor-memory、executor-cores、driver-memory
     --num-executors 3 \    配置executor的数量
     --driver-memory 1g \   配置driver的内存(影响不大)
     --executor-memory 1g \ 配置每一个executor的内存大小
     --executor-cores 3 \   配置每一个executor的cpu个数
    1.2参数调节多大合适?
        Yarn模式:先计算出yarn集群的所有大小,比如一共500g内存,100个cpu;
          这个时候可以分配的最大资源,比如给定50个executor、每个executor的内存大小10g,每个executor使用的cpu个数为2。    
    1.3使用原则
        在资源比较充足的情况下,尽可能的使用更多的计算资源,尽量去调节到最大的大小。
2.提高并行度
    当分配完所能分配的最大资源后,对对应资源去调节程序的并行度。合理设置并行度,可以充分利用集群资源,
    减少每个task处理数据量,而增加性能加快运行速度。
    2.1设置task数量,设置成与spark Applicaiton的总cpu core数量相同
    官方推荐,task数量,设置成spark Application 总cpu core数量的2~3倍
  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cai.cai

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值